Homework No. 11 (2024 Spring)

PHYS 510: CLASSICAL MECHANICS

School of Physics and Applied Physics, Southern Illinois University—Carbondale
Due date: Tuesday, 2024 Apr 30, 4.30pm

1. (20 points.) Resource: Lecture dated 2021 April 13, available at

https://youtu.be/VGExAMMkvMA4.

Kepler problem is described by the potential energy

and the corresponding Lagrangian
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For the case when the total energy E' is negative,
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where L, is the angular momentum, the motion is described by an ellipse,

. To . 1 + E
" 1tecos(d—do) (a/2r0)

r(¢) (4)

Perihelion is the point in the orbit of a planet when it is closest to the Sun. This cor-
responds to ¢ = ¢y. The precession of the perihelion is suitably defined in terms of the
angular displacement A¢ of the perihelion during one revolution,
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is the perihelion, when the planet is closest to Sun, and
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is the aphelion, corresponding to ¢ = ¢g + 7, when the planet is farthest from Sun.
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https://youtu.be/VGfxAMMkvM4

(a) For the Kepler problem derive the relation
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Show that the precession of perihelion is zero for the Kepler problem.

(b) When a small correction

SU(r) = —g — kU (7;—0)3 9)

expressed in terms of dimensionless parameter k using the relation 3 = —xUyr3, is
added we have the perturbed potential energy

vy =2 Lo (). (10)
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Show that the precession of the perihelion is no longer zero.



