Homework No. 10 (2024 Spring) PHYS 510: CLASSICAL MECHANICS

School of Physics and Applied Physics, Southern Illinois University-Carbondale
Due date: Tuesday, 2024 Apr 23, 4.30pm

1. (20 points.) (Refer Schwinger's QM, chapter 9) The Hamiltonian for a Kepler problem is

$$
\begin{equation*}
H=\frac{p_{1}^{2}}{2 m_{1}}+\frac{p_{2}^{2}}{2 m_{2}}-\frac{\alpha}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \tag{1}
\end{equation*}
$$

where \mathbf{r}_{1} and \mathbf{r}_{2} are the positions of the two constituent particles of masses m_{1} and m_{2}.
(a) Introduce the coordinates representing the center of mass, relative position, total momentum, and relative momentum:

$$
\begin{equation*}
\mathbf{R}=\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{m_{1}+m_{2}}, \quad \mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}, \quad \mathbf{P}=\mathbf{p}_{1}+\mathbf{p}_{2}, \quad \mathbf{p}=\frac{m_{2} \mathbf{p}_{1}-m_{1} \mathbf{p}_{2}}{m_{1}+m_{2}} \tag{2}
\end{equation*}
$$

respectively, to rewrite the Hamiltonian as

$$
\begin{equation*}
H=\frac{P^{2}}{2 M}+\frac{p^{2}}{2 \mu}-\frac{\alpha}{r}, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
M=m_{1}+m_{2}, \quad \frac{1}{\mu}=\frac{1}{m_{1}}+\frac{1}{m_{2}} . \tag{4}
\end{equation*}
$$

(b) Show that Hamilton's equations of motion are given by

$$
\begin{equation*}
\frac{d \mathbf{R}}{d t}=\frac{\mathbf{P}}{M}, \quad \frac{d \mathbf{P}}{d t}=0, \quad \frac{d \mathbf{r}}{d t}=\frac{\mathbf{p}}{\mu}, \quad \frac{d \mathbf{p}}{d t}=-\frac{\alpha \mathbf{r}}{r^{3}} . \tag{5}
\end{equation*}
$$

(c) Verify that the Hamiltonian H, the angular momentum $\mathbf{L}=\mathbf{r} \times \mathbf{p}$, and the Laplace-Runge-Lenz vector

$$
\begin{equation*}
\mathbf{A}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times \mathbf{L}}{\mu \alpha}, \tag{6}
\end{equation*}
$$

are the three constants of motion for the Kepler problem. That is, show that

$$
\begin{equation*}
\frac{d H}{d t}=0, \quad \frac{d \mathbf{L}}{d t}=0, \quad \frac{d \mathbf{A}}{d t}=0 \tag{7}
\end{equation*}
$$

2. ($\mathbf{2 0}$ points.) In the Kepler problem the orbit of a planet is a conic section

$$
\begin{equation*}
r(\phi)=\frac{r_{0}}{1+e \cos \left(\phi-\phi_{0}\right)} \tag{8}
\end{equation*}
$$

expressed in terms of the eccentricity e and distance r_{0}. Determine the constant ϕ_{0} to be 0 by requiring the initial condition

$$
\begin{equation*}
r(0)=\frac{r_{0}}{1+e} . \tag{9}
\end{equation*}
$$

This leads to

$$
\begin{equation*}
r(\pi)=\frac{r_{0}}{1-e} \tag{10}
\end{equation*}
$$

The distance r_{0} is characterized by the fact that the effective potential

$$
\begin{equation*}
U_{\mathrm{eff}}(r)=\frac{L_{z}^{2}}{2 \mu r^{2}}-\frac{\alpha}{r} \tag{11}
\end{equation*}
$$

is minimum at r_{0}. We used the definitions

$$
\begin{equation*}
r_{0}=\frac{L_{z}^{2}}{\mu \alpha}, \quad U_{\mathrm{eff}}\left(r_{0}\right)=-\frac{\alpha}{2 r_{0}}, \quad e=\sqrt{1-\frac{E}{U_{\mathrm{eff}}\left(r_{0}\right)}} . \tag{12}
\end{equation*}
$$

Thus, the orbit of a planet is completely determined by the energy E and the angular momentum L_{z}, which are constants of motion. The statement of conservation of angular momentum can be expressed in the form

$$
\begin{equation*}
d t=\frac{\mu}{L_{z}} r^{2} d \phi \tag{13}
\end{equation*}
$$

which is convenient for evaluating the time elapsed in the motion. For the case of elliptic orbit, $U_{\text {eff }}\left(r_{0}\right)<E<0$, show that the time period is given by

$$
\begin{equation*}
T=\frac{\mu}{L_{z}} \int_{0}^{2 \pi} d \phi \frac{r_{0}^{2}}{(1+e \cos \phi)^{2}}=\frac{\mu r_{0}^{2}}{L_{z}} \frac{2 \pi}{\left(1-e^{2}\right)^{\frac{3}{2}}} \tag{14}
\end{equation*}
$$

Show that at point ' 2 ' in Figure 2

Figure 1: Elliptic orbit

$$
\begin{equation*}
\phi=\frac{\pi}{2}, \quad \text { and } \quad r=r_{0} . \tag{15}
\end{equation*}
$$

The time taken to go from ' 1 ' to ' 2 ' is given by (need not be proved here)

$$
\begin{equation*}
t_{1 \rightarrow 2}=\frac{\mu}{L_{z}} \int_{0}^{\frac{\pi}{2}} d \phi \frac{r_{0}^{2}}{(1+e \cos \phi)^{2}}=\frac{T}{4}\left(\frac{4}{\pi} \tan ^{-1} \sqrt{\frac{1-e}{1+e}}-\frac{2 e}{\pi} \sqrt{1-e^{2}}\right) \tag{16}
\end{equation*}
$$

Evaluate $t_{1 \rightarrow 2}$ for $e=0$ and $e=1$. Show that at point ' 3 ' in Figure 2

$$
\begin{equation*}
\phi=\pi-\tan ^{-1}\left(\frac{\sqrt{1-e^{2}}}{e}\right), \quad \text { and } \quad r=a . \tag{17}
\end{equation*}
$$

The time taken to go from ' 1 ' to ' 3 ' is given by (need not be proved here)

$$
\begin{equation*}
t_{1 \rightarrow 3}=\frac{\mu}{L_{z}} \int_{0}^{\pi-\tan ^{-1}\left(\frac{\sqrt{1-e^{2}}}{e}\right)} d \phi \frac{r_{0}^{2}}{(1+e \cos \phi)^{2}}=\frac{T}{4}\left(1-\frac{2 e}{\pi}\right) . \tag{18}
\end{equation*}
$$

Similarly, the time taken to go from ' 3 ' to ' 4 ' is given by (need not be proved here)

$$
\begin{equation*}
t_{3 \rightarrow 4}=\frac{\mu}{L_{z}} \int_{\pi-\tan ^{-1}\left(\frac{\sqrt{1-e^{2}}}{e}\right)}^{\pi} d \phi \frac{r_{0}^{2}}{(1+e \cos \phi)^{2}}=\frac{T}{4}\left(1+\frac{2 e}{\pi}\right) . \tag{19}
\end{equation*}
$$

Evaluate the time elapsed in the above cases for $e \rightarrow 0$ and $e \rightarrow 1$. The eccentricity e of Earth's orbit is 0.0167 and timeperiod T is 365 days. Thus, calculate

$$
\begin{equation*}
t_{1 \rightarrow 3}-t_{1 \rightarrow 2} \tag{20}
\end{equation*}
$$

for Earth in units of days.

