Homework No. 09 (2024 Spring) PHYS 510: CLASSICAL MECHANICS

School of Physics and Applied Physics, Southern Illinois University-Carbondale Due date: Tuesday, 2024 Apr 17, 4.30pm

1. (20 points.) For two functions

$$
\begin{align*}
& A=A(\mathbf{x}, \mathbf{p}, t) \tag{1a}\\
& B=B(\mathbf{x}, \mathbf{p}, t) \tag{1b}
\end{align*}
$$

the Poisson braket with respect to the canonical variables \mathbf{x} and \mathbf{p} is defined as

$$
\begin{equation*}
[A, B]_{\mathbf{x}, \mathbf{p}}^{\mathrm{P.B.}} \equiv \frac{\partial A}{\partial \mathbf{x}} \cdot \frac{\partial B}{\partial \mathbf{p}}-\frac{\partial A}{\partial \mathbf{p}} \cdot \frac{\partial B}{\partial \mathbf{x}} \tag{2}
\end{equation*}
$$

Show that the Poisson braket satisfies the conditions for a Lie algebra. That is, show that
(a) Antisymmetry:

$$
\begin{equation*}
[A, B]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}=-[B, A]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }} \tag{3}
\end{equation*}
$$

(b) Bilinearity: (a and b are numbers.)

$$
\begin{equation*}
[a A+b B, C]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}=a[A, C]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}+b[B, C]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }} \tag{4}
\end{equation*}
$$

Further show that

$$
\begin{equation*}
[A B, C]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}=A[B, C]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}+[A, C]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }} B \tag{5}
\end{equation*}
$$

(c) Jacobi's identity:

$$
\begin{equation*}
\left[A,[B, C]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}+\left[B,[C, A]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}+\left[C,[A, B]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}=0 . \tag{6}
\end{equation*}
$$

2. (20 points.) Show that the commutator of two matrices,

$$
\begin{equation*}
[\mathbf{A}, \mathbf{B}] \equiv \mathbf{A B}-\mathbf{B A} \tag{7}
\end{equation*}
$$

satisfies the conditions for a Lie algebra, as does the Poisson bracket. In particular show that
(a) Antisymmetry:

$$
\begin{equation*}
[\mathbf{A}, \mathbf{B}]=-[\mathbf{B}, \mathbf{A}] . \tag{8}
\end{equation*}
$$

(b) Bilinearity: (a and b are numbers.)

$$
\begin{equation*}
[a \mathbf{A}+b \mathbf{B}, \mathbf{C}]=a[\mathbf{A}, \mathbf{C}]+b[\mathbf{B}, \mathbf{C}] . \tag{9}
\end{equation*}
$$

Further show that

$$
\begin{equation*}
[\mathbf{A B}, \mathbf{C}]=\mathbf{A}[\mathbf{B}, \mathbf{C}]+[\mathbf{A}, \mathbf{C}] \mathbf{B} \tag{10}
\end{equation*}
$$

(c) Jacobi's identity:

$$
\begin{equation*}
[\mathbf{A},[\mathbf{B}, \mathbf{C}]]+[\mathbf{B},[\mathbf{C}, \mathbf{A}]]+[\mathbf{C},[\mathbf{A}, \mathbf{B}]]=0 \tag{11}
\end{equation*}
$$

3. (20 points.) Show that the vector product of two vectors, in this problem denoted using

$$
\begin{equation*}
[\mathbf{A}, \mathbf{B}]_{v} \equiv \mathbf{A} \times \mathbf{B} \tag{12}
\end{equation*}
$$

satisfies the conditions for a Lie algebra, as does the Poisson bracket. In particular show that
(a) Antisymmetry:

$$
\begin{equation*}
[\mathbf{A}, \mathbf{B}]_{v}=-[\mathbf{B}, \mathbf{A}]_{v} . \tag{13}
\end{equation*}
$$

(b) Bilinearity: (a and b are numbers.)

$$
\begin{equation*}
[a \mathbf{A}+b \mathbf{B}, \mathbf{C}]_{v}=a[\mathbf{A}, \mathbf{C}]_{v}+b[\mathbf{B}, \mathbf{C}]_{v} \tag{14}
\end{equation*}
$$

Further show that

$$
\begin{equation*}
[\mathbf{A} \times \mathbf{B}, \mathbf{C}]_{v}=\mathbf{A} \times[\mathbf{B}, \mathbf{C}]_{v}+[\mathbf{A}, \mathbf{C}]_{v} \times \mathbf{B} \tag{15}
\end{equation*}
$$

(c) Jacobi's identity:

$$
\begin{equation*}
\left[\mathbf{A},[\mathbf{B}, \mathbf{C}]_{v}\right]_{v}+\left[\mathbf{B},[\mathbf{C}, \mathbf{A}]_{v}\right]_{v}+\left[\mathbf{C},[\mathbf{A}, \mathbf{B}]_{v}\right]_{v}=0 \tag{16}
\end{equation*}
$$

4. (20 points.) Given F and G are constants of motion, that is

$$
\begin{equation*}
[F, H]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}=0 \quad \text { and } \quad[G, H]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}=0 \tag{17}
\end{equation*}
$$

Then, using Jacobi's identity, show that $[F, G]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}$ is also a constant of motion. Thus, conclude the following:
(a) If L_{x} and L_{y} are constants of motion, then L_{z} is also a constant of motion.
(b) If p_{x} and L_{z} are constants of motion, then p_{y} is also a constant of motion.
5. (20 points.) (Refer Sec. 21 Dirac's QM book.)

The product rule for Poisson braket can be stated in the following different forms:

$$
\begin{align*}
& {\left[A_{1} A_{2}, B\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}=A_{1}\left[A_{2}, B\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}+\left[A_{1}, B\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }} A_{2},} \tag{18a}\\
& {\left[A, B_{1} B_{2}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}=B_{1}\left[A, B_{2}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}+\left[A, B_{1}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }} B_{2} .} \tag{18b}
\end{align*}
$$

(a) Thus, evaluate, in two different ways,

$$
\begin{align*}
{\left[A_{1} A_{2}, B_{1} B_{2}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}=} & A_{1} B_{1}\left[A_{2}, B_{2}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}+A_{1}\left[A_{2}, B_{1}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }} B_{2} \\
& +B_{1}\left[A_{1}, B_{2}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }} A_{2}+\left[A_{1}, B_{1}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.. }} B_{2} A_{2}, \tag{19a}\\
{\left[A_{1} A_{2}, B_{1} B_{2}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}=} & B_{1} A_{1}\left[A_{2}, B_{2}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}+B_{1}\left[A_{1}, B_{2}\right]_{\mathbf{x}, \mathbf{p} .}^{\text {P.B. }} A_{2} \\
& +A_{1}\left[A_{2}, B_{1}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }} B_{2}+\left[A_{1}, B_{1}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B }} A_{2} B_{2} . \tag{19b}
\end{align*}
$$

(b) Subtracting these results, obtain

$$
\begin{equation*}
\left(A_{1} B_{1}-B_{1} A_{1}\right)\left[A_{2}, B_{2}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}=\left[A_{1}, B_{1}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}\left(A_{2} B_{2}-B_{2} A_{2}\right) . \tag{20}
\end{equation*}
$$

Thus, using the definition of the commutation relation,

$$
\begin{equation*}
[A, B] \equiv A B-B A \tag{21}
\end{equation*}
$$

obtain the relation

$$
\begin{equation*}
\left[A_{1}, B_{1}\right]\left[A_{2}, B_{2}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}=\left[A_{1}, B_{1}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}\left[A_{2}, B_{2}\right] \tag{22}
\end{equation*}
$$

(c) Since this condition holds for A_{1} and B_{1} independent of A_{2} and B_{2}, conclude that

$$
\begin{align*}
& {\left[A_{1}, B_{1}\right]=i \hbar\left[A_{1}, B_{1}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}} \tag{23a}\\
& {\left[A_{2}, B_{2}\right]=i \hbar\left[A_{2}, B_{2}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}} \tag{23b}
\end{align*}
$$

where $i \hbar$ is necessarily a constant, independent of A_{1}, A_{2}, B_{1}, and B_{2}. This is the connection between the commutator braket in quantum mechanics and the Poisson braket in classical mechanics. If A 's and B 's are numbers, then, because their commutation relation is equal to zero, we necessairily have $\hbar=0$. But, if the commutation relation of A 's and B 's is not zero, then finite values of \hbar is allowed.
(d) Here the imaginary number $i=\sqrt{-1}$. Show that the constant \hbar is a real number if we presume the Poisson braket to be real, and require the construction

$$
\begin{equation*}
C=\frac{1}{i}(A B-B A) \tag{24}
\end{equation*}
$$

to be Hermitian. Experiment dictates that $\hbar=h / 2 \pi$, where

$$
\begin{equation*}
h \sim 6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \tag{25}
\end{equation*}
$$

is the Planck's constant with dimensions of action.

