Homework No. 08 (2024 Spring) PHYS 510: CLASSICAL MECHANICS
 School of Physics and Applied Physics, Southern Illinois University-Carbondale

Due date: Tuesday, 2024 Apr 2, 4.30pm

1. (20 points.) The Hamiltonian is defined by the relation

$$
\begin{equation*}
H\left(p_{i}, q_{i}, t\right)=\sum_{i} p_{i} \dot{q}_{i}-L\left(q_{i}, \dot{q}_{i}, t\right) \tag{1}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\frac{d H}{d t}=\frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t} . \tag{2}
\end{equation*}
$$

2. (20 points.) Consider infinitesimal rigid translation in space, described by

$$
\begin{equation*}
\delta \mathbf{r}=\delta \boldsymbol{\epsilon}, \quad \delta \mathbf{p}=0, \quad \delta t=0, \tag{3}
\end{equation*}
$$

where $\delta \boldsymbol{\epsilon}$ is independent of position and time.
(a) Show that the change in the action due to the above translation is

$$
\begin{equation*}
\frac{\delta W}{\delta \boldsymbol{\epsilon}}=-\int_{t_{1}}^{t_{2}} d t \frac{\partial H}{\partial \mathbf{r}} \tag{4}
\end{equation*}
$$

(b) Show, separately, that the change in the action under the above translation is also given by

$$
\begin{equation*}
\frac{\delta W}{\delta \boldsymbol{\epsilon}}=\int_{t_{1}}^{t_{2}} d t \frac{d \mathbf{p}}{d t}=\mathbf{p}\left(t_{2}\right)-\mathbf{p}\left(t_{1}\right) \tag{5}
\end{equation*}
$$

(c) The system is defined to have translational symmetry when the action does not change under rigid translation. Show that a system has translation symmetry when

$$
\begin{equation*}
-\frac{\partial H}{\partial \mathbf{r}}=0 . \tag{6}
\end{equation*}
$$

That is, when the Hamiltonian is independent of position. Or, when the force $\mathbf{F}=-\partial H / \partial \mathbf{r}=0$.
(d) Deduce that the linear momentum is conserved, that is,

$$
\begin{equation*}
\mathbf{p}\left(t_{1}\right)=\mathbf{p}\left(t_{2}\right), \tag{7}
\end{equation*}
$$

when the action has translation symmetry.
3. (20 points.) Consider infinitesimal rigid translation in time, described by

$$
\begin{equation*}
\delta \mathbf{r}=0, \quad \delta \mathbf{p}=0, \quad \delta t=\delta \epsilon, \tag{8}
\end{equation*}
$$

where $\delta \epsilon$ is independent of position and time.
(a) Show that the change in the action due to the above translation is

$$
\begin{equation*}
\frac{\delta W}{\delta \epsilon}=-\int_{t_{1}}^{t_{2}} d t \frac{\partial H}{\partial t} \tag{9}
\end{equation*}
$$

(b) Show, separately, that the change in the action under the above translation is also given by

$$
\begin{equation*}
\frac{\delta W}{\delta \epsilon}=-\int_{t_{1}}^{t_{2}} d t \frac{d H}{d t}=-H\left(t_{2}\right)+H\left(t_{1}\right) \tag{10}
\end{equation*}
$$

(c) The system is defined to have translational symmetry when the action does not change under rigid translation. Show that a system has translation symmetry when

$$
\begin{equation*}
-\frac{\partial H}{\partial t}=0 \tag{11}
\end{equation*}
$$

That is, when the Hamiltonian is independent of time.
(d) Deduce that the Hamiltonian is conserved, that is,

$$
\begin{equation*}
H\left(t_{1}\right)=H\left(t_{2}\right), \tag{12}
\end{equation*}
$$

when the action has translation symmetry.
4. (20 points.) A general rotation in 3-dimensions can be written in terms of consecutive rotations about x, y, and z axes,

$$
\left(\begin{array}{l}
x_{1}^{\prime} \tag{13}\\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{1} & \sin \theta_{1} \\
0 & -\sin \theta_{1} & \cos \theta_{1}
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{2} & 0 & -\sin \theta_{2} \\
0 & 1 & 0 \\
\sin \theta_{2} & 0 & \cos \theta_{2}
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{3} & \sin \theta_{3} & 0 \\
-\sin \theta_{3} & \cos \theta_{3} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) .
$$

For infinitesimal rotations we use

$$
\begin{align*}
\cos \theta_{i} & \sim 1 \tag{14a}\\
\sin \theta_{i} & \sim \theta_{i} \rightarrow \delta \theta_{i} \tag{14b}
\end{align*}
$$

to obtain

$$
\left(\begin{array}{l}
x_{1}^{\prime} \tag{15}\\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
1 & \delta \theta_{3} & -\delta \theta_{2} \\
-\delta \theta_{3} & 1 & \delta \theta_{1} \\
\delta \theta_{2} & -\delta \theta_{1} & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) .
$$

Show that this corresponds to the vector relation

$$
\begin{equation*}
\mathbf{r}^{\prime}=\mathbf{r}-\delta \boldsymbol{\theta} \times \mathbf{r} \tag{16}
\end{equation*}
$$

where

$$
\begin{align*}
\mathbf{r} & =x_{1} \hat{\mathbf{x}}+x_{2} \hat{\mathbf{y}}+x_{3} \hat{\mathbf{z}} \tag{17a}\\
\delta \boldsymbol{\theta} & =\delta \theta_{1} \hat{\mathbf{x}}+\delta \theta_{2} \hat{\mathbf{y}}+\delta \theta_{3} \hat{\mathbf{z}} . \tag{17b}
\end{align*}
$$

As a particular example, verify that a rotation about the direction $\hat{\mathbf{z}}$ by an infinitesimal (azimuth) angle $\delta \phi$ is described by

$$
\begin{equation*}
\delta \boldsymbol{\theta}=\hat{\mathbf{z}} \delta \phi . \tag{18}
\end{equation*}
$$

The corresponding infinitesimal transformation in \mathbf{r} is given by

$$
\begin{equation*}
\delta \mathbf{r}=\delta \phi \hat{\mathbf{z}} \times \mathbf{r}=\hat{\boldsymbol{\phi}} \rho \delta \phi, \tag{19}
\end{equation*}
$$

where ρ and ϕ are the cylindrical coordinates defined as

$$
\begin{equation*}
\hat{\mathbf{z}} \times \mathbf{r}=\boldsymbol{\phi} \quad \text { and } \quad|\hat{\mathbf{z}} \times \mathbf{r}|=\rho \tag{20}
\end{equation*}
$$

Observe that, in rectangular coordinates $\rho \hat{\boldsymbol{\phi}}=x \hat{\mathbf{y}}-y \hat{\mathbf{x}}$.
5. (20 points.) Consider infinitesimal rigid rotation, described by

$$
\begin{equation*}
\delta \mathbf{r}=\delta \boldsymbol{\omega} \times \mathbf{r}, \quad \delta \mathbf{p}=\delta \boldsymbol{\omega} \times \mathbf{p}, \quad \delta t=0 \tag{21}
\end{equation*}
$$

where $d \delta \boldsymbol{\omega} / d t=0$.
(a) Show that the variation in the action under the above rotation is

$$
\begin{equation*}
\frac{\delta W}{\delta \boldsymbol{\omega}}=\int_{t_{1}}^{t_{2}} d t\left[\mathbf{r} \times \frac{\partial L}{\partial \mathbf{r}}+\mathbf{p} \times \frac{\partial L}{\partial \mathbf{p}}\right] \tag{22}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\delta W}{\delta \boldsymbol{\omega}}=-\int_{t_{1}}^{t_{2}} d t\left[\mathbf{r} \times \frac{\partial H}{\partial \mathbf{r}}+\mathbf{p} \times \frac{\partial H}{\partial \mathbf{p}}\right] \tag{23}
\end{equation*}
$$

(b) Show, separately, that the change in the action under the above rotation is also given by

$$
\begin{equation*}
\frac{\delta W}{\delta \boldsymbol{\omega}}=\int_{t_{1}}^{t_{2}} d t \frac{d \mathbf{L}}{d t}=\mathbf{L}\left(t_{2}\right)-\mathbf{L}\left(t_{1}\right) \tag{24}
\end{equation*}
$$

where $\mathbf{L}=\mathbf{r} \times \mathbf{p}$ is the angular momentum.
(c) The system is defined to have rotational symmetry when the action does not change under rigid rotation. Show that a system has rotation symmetry when

$$
\begin{equation*}
\mathbf{r} \times \frac{\partial L}{\partial \mathbf{r}}=0 \quad \text { and } \quad \mathbf{p} \times \frac{\partial L}{\partial \mathbf{p}}=0 \tag{25}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{r} \times \frac{\partial H}{\partial \mathbf{r}}=0 \quad \text { and } \quad \mathbf{p} \times \frac{\partial H}{\partial \mathbf{p}}=0 \tag{26}
\end{equation*}
$$

Show that this corresponds to

$$
\begin{equation*}
\frac{\partial L}{\partial \theta}=0 \quad \text { and } \quad \frac{\partial L}{\partial \phi}=0 \tag{27}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial H}{\partial \theta}=0 \quad \text { and } \quad \frac{\partial H}{\partial \phi}=0 . \tag{28}
\end{equation*}
$$

That is, when the Lagrangian is independent of angular coordinates θ and ϕ.
(d) Deduce that the anglular momentum is conserved, that is,

$$
\begin{equation*}
\mathbf{L}\left(t_{1}\right)=\mathbf{L}\left(t_{2}\right), \tag{29}
\end{equation*}
$$

when the action has rotational symmetry.

