
Homework No. 06 (2024 Spring)

PHYS 510: CLASSICAL MECHANICS

School of Physics and Applied Physics, Southern Illinois University–Carbondale

Due date: Tuesday, 2024 Mar 19, 4.30pm

1. (20 points.) Spherical pendulum: Consider a pendulum that is suspended such that a
mass m is able to move freely on the surface of a sphere of radius a (the length of the
pendulum). The mass is then subject to the constraint

φ =
1

2
(r · r− a2) = 0, (1)

where a factor of 1/2 is introduced anticipating cancellations. Consider the Lagrangian
function

L(r,v) =
1

2
mv · v +mg · r+T ·∇φ. (2)

Here φ represents the equation for the surface of constraint, such that the gradient ∇φ
is normal to the surface. The Lagrange multiplier T is interpreted as the force that
is entrusted with the task of keeping the mass on the surface during motion. In this
example of spherical pendulum T is the force of tension. My recording on the topic of
planar pendulum, available at

https://youtu.be/dTU9p9VyeqE (45 minute video),

is a resource.

(a) Evaluate the gradient ∇ of the condition of constraint. Show that

∇φ = r. (3)

(Hint: Use ∇ r = 1.) Thus, show that

T ·∇φ = T · r (4)

and

L(r,v) =
1

2
mv · v +mg · r+T · r. (5)

(b) Using the Euler-Lagrange equations derive the equations of motion

ma = mg +T, (6)

where a is acceleration of mass m. Comparing Eq. (6) with the Newton equation
of motion we recognize the Lagrangian multiplier to be the force of tension. In
particular, this specifies the direction of T to be in the radially inward direction.
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i. Equation of constraint: Find the projection of Newton’s law of motion along the
direction normal to the surface of constraint. Since r̂ is normal to the surface of
the sphere we have

ma · r̂ = mg · r̂+T · r̂, (7)

which corresponds to

−mφ̇2a = mga cosφ+T · r̂. (8)

ii. Equation of motion: By projecting in the tangential direction φ̂ derive the
equation of motion

aφ̈ = −g sin φ. (9)

(c) Evaluate the canonical momentum

p =
∂L

∂v
= mv. (10)

(d) Construct the Hamiltonian using

H(r,p) = v · p− L(r,v) (11)

to be

H(r,p) =
p2

2m
−mg · r−T · r. (12)

Derive the Hamilton equations of motion to be

dr

dt
=

∂H

∂p
=

p

m
, (13a)

dp

dt
= −

∂H

∂r
= mg +T. (13b)

Derive the statement of conservation of energy

dH

dt
= 0 (14)

starting from the Hamiltonian in Eq. (12) and using Hamilton equations of motion.
You will also need to prove

r ·
dT

dt
= 0. (15)

(e) Show that the angular momentum L = r× p satisfies the equation of motion

dL

dt
= r×mg, (16)

and the angular momentum in the direction of g is conserved, that is,

d

dt
(g · L) = 0. (17)
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Area swept out by a particle as it moves along it’s trajectory is given by

1

2
r× dr. (18)

The rate at which this area changes is called the areal velocity. Thus, angular
momentum is a measure of areal velocity. So, conclude the conservation of areal
velocity in the direction of g.

2. (20 points.) The Atwood machine consists of two masses m1 and m2 connected by a
massless (inextensible) string passing over a massless pulley. See Figure 1. Massless pulley
implies that tension in the string on both sides of the pulley is the same, say T . Further,
the string being inextensible implies that the magnitude of the accelerations of both the
masses are the same. Let m2 > m1.

m1

m2

y1

y2

Figure 1: example

(a) Let lengths y1 and y2 be positive distances from the pulley to the masses such that
the accelerations a1 = ÿ1 and a2 = ÿ2 satisfy a2 = −a1 = a. Using Newton’s law
determine the equations of motion for the masses to be

m2g − T = m2a, (19a)

m1g − T = −m1a. (19b)

Thus, show that

Equation of motion: a =

(

m2 −m1

m2 +m1

)

g, (20a)

Equation of constraint: T =
2m1m2g

(m1 +m2)
. (20b)

(b) The constraint among the dynamical variables y1 and y2 is

y1 + y2 = L, (21)
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where L is the total length of the string connecting the two masses. Show that the
Lagrangian for Atwood’s machine can be expressed in terms of a single dynamical
variable, say y2, as

L(y2, ẏ2) =
1

2
(m1 +m2)ẏ

2

2
+ (m2 −m1)gy2. (22)

Find the corresponding Euler-Lagrange equation.

(c) Using the idea of Lagrange multiplier construct another Lagrangian

L(y1, y2, ẏ1, ẏ2) =
1

2
m1ẏ

2

1
+

1

2
m2ẏ

2

2
+m1gy1 +m2gy2 − T

∂

∂y1
(y1 + y2 − L)2

1

2
, (23)

where T here is interpreted as the Lagrangian multiplier. Find the corresponding
Euler-Lagrange equations.

3. (20 points.) Consider a wheel rolling on a horizontal surface. See Figure 2. The following

θ

R

x

Figure 2: Problem 3.

distinct types of motion are possible for the wheel:

x < θR, slipping (e.g. in snow),
x = θR, perfect rolling,
x > θR, sliding (e.g. on ice).

(24)

Differentiation of the these relations leads to the characterizations, v < ωR, v = ωR, and
v > ωR, respectively, where v = ẋ is the linear velocity and ω = θ̇ is the angular velocity.
Assuming the wheel is perfectly rolling, at a given instant of time, the tendency of motion
could be to slip, to keep on perfectly rolling, or to slide.

Deduce that while perfectly rolling the relative motion of the point on the wheel that is in
contact with the surface with respect to the surface is exactly zero. Thus, conclude that
the force of friction on the wheel is zero. The analogy is a mass at rest on a horizontal
surface. However, while perfectly rolling, it is possible to have the tendency to slip or
slide without actually slipping of sliding. The analogy is that of a mass at rest under the
action of an external force and the force of friction. In these cases the force of friction is
that of static friction and it acts in the forward or backward direction.

In the following we differentiate between the following:
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(a) Tendency of the wheel is to slip (without actually slipping) while perfectly rolling.

(b) Tendency of the wheel is to keep on perfectly rolling.

(c) Tendency of the wheel is to slide (without actually sliding) while perfectly rolling.

Deduce the direction of the force of friction in the above cases. Determine if the friction
is working against linear acceleration or angular acceleration.

Perfect rolling involves the contraint x = θR. Thus, using the D’Alembert’s principle and
idea of Lagrange multiplier we can write the Lagragian for a perfectly rolling wheel on a
horizontal surface to be

L(x, ẋ, θ, θ̇) =
1

2
mẋ2 +

1

2
Iθ̇2 − F

s
(x− θR), (25)

where m is the mass of the wheel, I is the moment of inertia of the wheel, and F
s
is

the Lagrangian multiplier. Using D’Alembert’s principle give an interpretation for the
Lagrangian multiplier F

s
. What is the dimension of F

s
? Infer the sign of F

s
for the cases

when the tendency of the wheel is to slip or slide while perfectly rolling.
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