Homework No. 03 (2024 Spring) PHYS 510: CLASSICAL MECHANICS

School of Physics and Applied Physics, Southern Illinois University-Carbondale
Due date: Tuesday, 2024 Feb 13, 4.30pm

1. (20 points.) Fermat's principle in ray optics states that a ray of light takes the path of least time between two given points. Derive Snell's law,

$$
\begin{equation*}
n(x) \sin \theta(x)=\eta, \tag{1}
\end{equation*}
$$

where η is a constant, starting from Fermat's principle, for a stratified medium. Here $n(x)$ is the refractive index and $\theta(x)$ is the angle the trajectory of light makes with respect to the x axis.
2. (20 points.) Snell's law for refraction for stratified (layered) medium states that

$$
\begin{equation*}
n(x) \sin \theta(x)=\eta \tag{2}
\end{equation*}
$$

where η is a constant. Show that Snell's law can be rewritten in the form

$$
\begin{equation*}
\frac{d y}{d x}=\frac{\eta}{\sqrt{n(x)^{2}-\eta^{2}}} \tag{3}
\end{equation*}
$$

(a) Let us consider a medium with refractive index $\left(x_{1}=a\right)$

$$
n(x)= \begin{cases}1, & x<a \tag{4}\\ \frac{x}{a}, & a<x\end{cases}
$$

Solve the corresponding differential equation, by substituting $x=\eta a \cosh t$, to obtain

$$
\begin{equation*}
y(x)-y_{0}=\eta a \cosh ^{-1}\left(\frac{1}{\eta} \frac{x}{a}\right), \quad a<x . \tag{5}
\end{equation*}
$$

The path in this medium satisfies the equation of a catenary. It is also useful to express the solution in terms of the logarithm as

$$
\begin{equation*}
y(x)-y_{0}=\eta a \ln \left[\frac{1}{\eta} \frac{x}{a}+\sqrt{\left(\frac{1}{\eta} \frac{x}{a}\right)^{2}-1}\right], \quad a<x \tag{6}
\end{equation*}
$$

(b) For initial conditions, $\left(x_{1}=a\right.$, $)$

$$
\begin{equation*}
y\left(x_{1}\right)=y_{1} \quad \text { and }\left.\quad \frac{d y}{d x}\right|_{x=x_{1}}=y_{1}^{\prime} \tag{7}
\end{equation*}
$$

show that integration constants are determined as

$$
\begin{equation*}
y_{0}=y_{1}-\eta a \ln \left[\frac{1}{\eta}+\sqrt{\frac{1}{\eta^{2}}-1}\right], \quad \text { and } \quad \eta=\frac{y_{1}^{\prime}}{\sqrt{1+y_{1}^{\prime 2}}} \tag{8}
\end{equation*}
$$

Thus, write the solution as

$$
\begin{equation*}
y(x)-y_{1}=\eta a \ln \left[\frac{\frac{1}{\eta} \frac{x}{a}+\sqrt{\frac{1}{\eta^{2}} \frac{x^{2}}{a^{2}}-1}}{\frac{1}{\eta}+\sqrt{\frac{1}{\eta^{2}}-1}}\right], \quad a<x \tag{9}
\end{equation*}
$$

(c) For the special case $y_{1}=0$ and $y_{1}^{\prime} \rightarrow \infty$ show that $\eta=1$ and

$$
\begin{equation*}
y(x)=a \ln \left[\frac{x}{a}+\sqrt{\frac{x^{2}}{a^{2}}-1}\right], \quad a<x . \tag{10}
\end{equation*}
$$

3. (20 points.) Find the geodesics on the surface of a circular cylinder. Identify these curves. Hint: To have a visual perception of these geodesics it helps to note that a cylinder can be mapped (or cut open) into a plane.
(a) The distance between two points on the surface of a cylinder of radius a is characterized by the infinitesimal statement

$$
\begin{equation*}
d s^{2}=a^{2} d \phi^{2}+d z^{2} . \tag{11}
\end{equation*}
$$

(b) The geodesic is the extremal of the functional

$$
\begin{equation*}
l[z]=\int_{\left(\phi_{1}, z_{1}\right)}^{\left(\phi_{2}, z_{2}\right)} d s=\int_{\phi_{1}}^{\phi_{2}} a d \phi \sqrt{1+\left(\frac{1}{a} \frac{d z}{d \phi}\right)^{2}} \tag{12}
\end{equation*}
$$

(c) Since the curve passes through the points $\left(z_{1}, \phi_{1}\right)$ and $\left(z_{2}, \phi_{2}\right)$ we have no variations on the end points. Thus, show that

$$
\begin{equation*}
\frac{\delta l[z]}{\delta z(\phi)}=-\frac{d}{d \phi}\left[\frac{\frac{1}{a} \frac{d z}{d \phi}}{\sqrt{1+\left(\frac{1}{a} \frac{d z}{d \phi}\right)^{2}}}\right] \tag{13}
\end{equation*}
$$

(d) Using the extremum principle

$$
\begin{equation*}
\frac{\delta l[z]}{\delta z(\phi)}=0 \tag{14}
\end{equation*}
$$

show that the differential equation for the geodesic is

$$
\begin{equation*}
\frac{1}{a} \frac{d z}{d \phi}=c_{1} \tag{15}
\end{equation*}
$$

where c_{1} is a contant.
(e) Solve the differential equation. Identify the curve described by the solution to be a helix. Illustrate a particular curve using a diagram.
4. (20 points.) Consider a rope of uniform mass density $\lambda=d m / d s$ hanging from two points, $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, as shown in Figure 1. The gravitational potential energy of

Figure 1: Problem 4.
an infinitely tiny element of this rope at point (x, y) is given by

$$
\begin{equation*}
d U=d m g y=\lambda g d s y \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
d s^{2}=d x^{2}+d y^{2} \tag{17}
\end{equation*}
$$

A catenary is the curve that the rope assumes, that minimizes the total potential energy of the rope.
(a) Show that the total potential energy U of the rope hanging between points x_{1} and x_{2} is given by

$$
\begin{equation*}
U[x]=\lambda g \int_{\left(x_{1}, y_{1}\right)}^{\left(x_{2}, y_{2}\right)} y d s=\lambda g \int_{y_{1}}^{y_{2}} d y y \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} \tag{18}
\end{equation*}
$$

(b) Since the curve passes through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, we have no variations at these (end) points. Thus, show that

$$
\begin{equation*}
\frac{\delta U[x]}{\delta x(y)}=-\lambda g \frac{d}{d y}\left[y \frac{\frac{d x}{d y}}{\sqrt{1+\left(\frac{d x}{d y}\right)^{2}}}\right] \tag{19}
\end{equation*}
$$

(c) Using the extremum principle show that the differential equation for the catenary is

$$
\begin{equation*}
\frac{d x}{d y}=\frac{a}{\sqrt{y^{2}-a^{2}}} \tag{20}
\end{equation*}
$$

where a is an integration contant.
(d) Show that integration of the differential equation yields the equation of the catenary

$$
\begin{equation*}
y=a \cosh \frac{x-x_{0}}{a}, \tag{21}
\end{equation*}
$$

where x_{0} is another integration constant.
(e) For the case $y_{1}=y_{2}$ we have

$$
\begin{align*}
& \frac{y_{1}}{a}=\cosh \frac{x_{1}-x_{0}}{a} \tag{22a}\\
& \frac{y_{2}}{a}=\cosh \frac{x_{2}-x_{0}}{a} \tag{22b}
\end{align*}
$$

which leads to, assuming $x_{1} \neq x_{2}$,

$$
\begin{equation*}
x_{0}=\frac{x_{1}+x_{2}}{2} \tag{23}
\end{equation*}
$$

Identify x_{0} in Figure 1. Next, derive

$$
\begin{equation*}
\frac{y_{1}}{a}=\frac{y_{2}}{a}=\cosh \frac{x_{2}-x_{1}}{2 a}, \tag{24}
\end{equation*}
$$

which, in principle, determines a. However, this is a transcendental equation in a and does not allow exact evaluation of a in closed form and one depends on numerical solutions. Observe that, if $x=x_{0}$ in Eq. (21), then $y=a$. Identify a in Figure 1.

