Homework No. 02 (2024 Spring) PHYS 510: CLASSICAL MECHANICS

School of Physics and Applied Physics, Southern Illinois University-Carbondale
Due date: Tuesday, 2024 Feb 6, 4.30pm

1. (20 points.) The principal identity of functional differentiation is

$$
\begin{equation*}
\frac{\delta u(x)}{\delta u\left(x^{\prime}\right)}=\delta\left(x-x^{\prime}\right) \tag{1}
\end{equation*}
$$

which states that the variation in the function u at x is independent of the variation in the function u at x^{\prime} unless $x=x^{\prime}$. This is a generalization of the identity in multivariable calculus

$$
\begin{equation*}
\frac{\partial u^{j}}{\partial u^{i}}=\delta_{i}{ }^{j}, \tag{2}
\end{equation*}
$$

which states that the variables u^{i} and u^{j} are independent unless $i=j$. Using the property of δ-function,

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x a(x) \delta\left(x-x^{\prime}\right)=a\left(x^{\prime}\right) \tag{3}
\end{equation*}
$$

derive the following identities by repeatedly differentiating by parts.
(a)

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x a(x) \frac{d}{d x} \delta\left(x-x^{\prime}\right)=-\frac{d}{d x^{\prime}} a\left(x^{\prime}\right) \tag{4}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x a(x) \frac{d^{2}}{d x^{2}} \delta\left(x-x^{\prime}\right)=+\frac{d^{2}}{d x^{\prime 2}} a\left(x^{\prime}\right) \tag{5}
\end{equation*}
$$

(c)

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x a(x) \frac{d^{3}}{d x^{3}} \delta\left(x-x^{\prime}\right)=-\frac{d^{3}}{d x^{\prime 3}} a\left(x^{\prime}\right) \tag{6}
\end{equation*}
$$

(d)

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x a(x) \frac{d^{n}}{d x^{n}} \delta\left(x-x^{\prime}\right)=(-1)^{n} \frac{d^{n}}{d x^{\prime n}} a\left(x^{\prime}\right) \tag{7}
\end{equation*}
$$

2. ($\mathbf{2 0}$ points.) Evaluate the functional derivative

$$
\begin{equation*}
\frac{\delta F[u]}{\delta u(x)} \tag{8}
\end{equation*}
$$

of the following functionals, assuming no variation at the end points.
(a)

$$
\begin{equation*}
F[u]=\int_{x_{1}}^{x_{2}} d x a(x) u(x) \tag{9}
\end{equation*}
$$

(b)

$$
\begin{equation*}
F[u]=\int_{x_{1}}^{x_{2}} d x a(x) u(x)^{2} \tag{10}
\end{equation*}
$$

(c)

$$
\begin{equation*}
F[u]=\int_{x_{1}}^{x_{2}} d x \sqrt{1+u(x)^{2}} \tag{11}
\end{equation*}
$$

(d)

$$
\begin{equation*}
F[u]=\int_{x_{1}}^{x_{2}} d x[u(x)+a(x)][u(x)+b(x)] \tag{12}
\end{equation*}
$$

(e)

$$
\begin{equation*}
F[u]=\int_{x_{1}}^{x_{2}} d x \frac{a(x) u(x)}{[1+b(x) u(x)]} \tag{13}
\end{equation*}
$$

3. (20 points.) [Refer: Gelfand and Fomin, Calculus of Variations.] Evaluate the functional derivative

$$
\begin{equation*}
\frac{\delta F[y]}{\delta y(x)} \tag{14}
\end{equation*}
$$

of the following functionals, assuming no variation at the end points.
(a)

$$
\begin{equation*}
F[y]=\int_{0}^{1} d x \frac{d y}{d x} \tag{15}
\end{equation*}
$$

(b)

$$
\begin{equation*}
F[y]=\int_{x_{1}}^{x_{2}} d x a(x) \frac{d y(x)}{d x} \tag{16}
\end{equation*}
$$

(c)

$$
\begin{equation*}
F[y]=\int_{0}^{1} d x y \frac{d y}{d x} \tag{17}
\end{equation*}
$$

(d)

$$
\begin{equation*}
F[y]=\int_{0}^{1} d x x y \frac{d y}{d x} \tag{18}
\end{equation*}
$$

(e)

$$
\begin{equation*}
F[y]=\int_{a}^{b} \frac{d x}{x^{3}}\left(\frac{d y}{d x}\right)^{2} \tag{19}
\end{equation*}
$$

4. (20 points.) Evaluate the functional derivative

$$
\begin{equation*}
\frac{\delta F[u]}{\delta u(x)} \tag{20}
\end{equation*}
$$

of the following functionals, assuming no variation at the end points. Given $a(x)$ is a known function.
(a)

$$
\begin{equation*}
F[u]=\int_{x_{1}}^{x_{2}} d x a(x)\left[1+\frac{d u(x)}{d x}+\frac{d^{2} u(x)}{d x^{2}}+\frac{d^{3} u(x)}{d x^{3}}\right] \tag{21}
\end{equation*}
$$

(b)

$$
\begin{equation*}
F[u]=\int_{a}^{b} d x \frac{1}{\left(1+\frac{d^{3} u}{d x^{3}}\right)} \tag{22}
\end{equation*}
$$

(c)

$$
\begin{equation*}
F[u]=\int_{a}^{b} d x x^{5} \sqrt{1+\frac{d^{3} u}{d x^{3}}} \tag{23}
\end{equation*}
$$

(d)

$$
\begin{equation*}
F[u]=\int_{a}^{b} d x \sqrt{1+\frac{d u}{d x}+\frac{d^{3} u}{d x^{3}}} \tag{24}
\end{equation*}
$$

5. (20 points.) Evaluate the functional derivative

$$
\begin{equation*}
\frac{\delta W[u]}{\delta u(t)} \tag{25}
\end{equation*}
$$

of the following functionals, with u replaced with the appropriate variable, assuming no variation at the end points.
(a) Let $x(t)$ be position at time t of mass m. The action

$$
\begin{equation*}
W[x]=\int_{t_{1}}^{t_{2}} d t \frac{1}{2} m\left(\frac{d x}{d t}\right)^{2} \tag{26}
\end{equation*}
$$

is a functional of position.
(b) Let $z(t)$ be the vertical height at time t of mass m in a uniform gravitational field g. The action

$$
\begin{equation*}
W[z]=\int_{t_{1}}^{t_{2}} d t\left[\frac{1}{2} m\left(\frac{d z}{d t}\right)^{2}-m g z\right] \tag{27}
\end{equation*}
$$

is a functional of the vertical height.
(c) Let $x(t)$ be the stretch at time t of a spring of spring constant k attached to a mass m. The action

$$
\begin{equation*}
W[x]=\int_{t_{1}}^{t_{2}} d t\left[\frac{1}{2} m\left(\frac{d x}{d t}\right)^{2}-\frac{1}{2} k x^{2}\right] \tag{28}
\end{equation*}
$$

is a functional of the stretch.
(d) Let $r(t)$ be the radial distance at time t of mass m released from rest in a gravitational field of a planet of mass M. The action

$$
\begin{equation*}
W[r]=\int_{t_{1}}^{t_{2}} d t\left[\frac{1}{2} m\left(\frac{d r}{d t}\right)^{2}+\frac{G M m}{r}\right] \tag{29}
\end{equation*}
$$

is a functional of the radial distance.
(e) Let $r(t)$ be the radial distance at time t of charge q_{1} of mass m released from rest in an electrostatic field of another charge of charge q_{2}. The action

$$
\begin{equation*}
W[r]=\int_{t_{1}}^{t_{2}} d t\left[\frac{1}{2} m\left(\frac{d r}{d t}\right)^{2}-\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r}\right] \tag{30}
\end{equation*}
$$

is a functional of the radial distance.

