Midterm Exam No. 01 (2024 Spring)

PHYS 205B: UNIVERSITY PHYSICS

School of Physics and Applied Physics, Southern Illinois University–Carbondale Date: 2024 Feb 15

(Name)

(Signature)

Instructions

- 1. Seating direction: Please be seated on seats with seat-numbers divisible by 4.
- 2. Total time = 75 minutes.
- 3. There are 4 short questions and 3 homework-style problems in this exam.
- 4. Equation sheet is provided separately.
- 5. To be considered for partial credit you need to present your work in detail and organize it clearly.
- 6. A simple calculator (with trigonometric functions) is allowed.
- 7. Use of smart devices, including smart watches, is strictly prohibited. They should stay out of reach during the exam.
- 8. Restroom breaks are allowed. Under questionable circumstances this might lead up to a Makeup Exam.
- 9. Academic misconduct will lead to a failing grade in the course.

1. (5 points.) Two identical conducting spheres A and B carry charges $Q_A = -2.0 \,\mu\text{C}$ and $Q_B = +7.0 \,\mu\text{C}$. They are separated by a distance much larger than their diameters. A third identical conducting sphere C is uncharged. Sphere C is first touched to A, then to B, and finally removed. As a result, what is the charge on B.

2. (5 points.) What is the magnitude and direction of the total electric force on an electric dipole when it is placed in a uniform electric field?

3. (5 points.) A spherical thin conducting shell of radius a has a negative charge -2.0 Q on it. Another concentric spherical thin conducting shell of radius b > a has a positive charge +3.0 Q on it. Draw the resultant electric field lines in the three regions.

Figure 1: Problem 3

4. (5 points.) Figure 2 illustrates the electric field lines for a configuration consisting of two charges, $q_1 = -1.0 \,\mu\text{C}$ and $q_2 = +3.0 \,\mu\text{C}$, separated by distance d. Draw the equipotential surface associated with zero voltage.

Hint: Regions very close to positive charges are higher in electric potential relative to regions very close to negative charges.

Figure 2: Electric field lines due to two charges, a negative charge q_1 and a positive charge q_2 such that $|q_2| > |q_1|$.

5. (10 points.) Four charges $q_1 = +q$, $q_2 = +2.0 q$, $q_3 = -q$, and $q_4 = -2.0 q$, are placed at the corners of a square of side L, such that q_1 and q_4 are at diagonally opposite corners. Refer Figure 3. Calculate the magnitude and direction of the total electric field at the center of the square.

Figure 3: Problem 5

6. (10 points.) An electron and a proton are released from rest in a uniform electric field. The particles attain speeds v_e and v_p in a time Δt . Determine the ratio of velocities v_e/v_p . Then, determine the ratio of their linear momentums. Then, determine the ratio of their kinetic energies.

7. (10 points.) Consider a configuration consisting of one negative charge $q_1 = -2.0 Q$ and two positive charges $q_2 = +Q$, $q_3 = +Q$, at the corners of an equilateral triangle of sidelength L. How much energy is needed to move a positive charge q_4 from infinity to the center of the triangle.

$$^{ullet}q_1$$

 q_3^{\bullet}

 q_2

Figure 4: Problem 7