Homework No. 15 (Spring 2024)

PHYS 205A-001: UNIVERSITY PHYSICS
School of Physics and Applied Physics, Southern Illinois University-Carbondale
Due date: Friday, 2024 May 3, 11:59 PM, on D2L

Instructions

- You are encouraged to use any of the resources to complete this homework. However, the extent to which you depend on resources while doing this homework is a measure of how much extra work you need to put in to master the associated concepts. Solutions should be the last resource.
- Links to solutions are provided. Further, links to few variations of the problem are provided that serve as practice problems.
- Describe your thought process in detail and organize it clearly. Make sure your answer has units and right number of significant digits.
- After completion, scan the pages as a single PDF file, and submit the file on D2L (under Assesments \rightarrow Assignments). You can replace your PDF file, only the last file is graded.

Problems

1. ($\mathbf{1 0}$ points.) Three identical stars, each of mass m, are positioned at the corners of a square of edge length L.
(a) Find the magnitude and direction of the gravitational field at the vacant corner of the square due to the three stars.
(b) Find the magnitude and direction of the gravitational force a planet of mass M would experience if it is placed in the vacant corner.
(c) Find the magnitude and direction of the gravitational field at the center of the square.
[Solution, 2017F-001 FE P09, 2017F-002 FE P09, 2016F FE P10, 2015F FE P12]
2. ($\mathbf{1 0}$ points.) Determine the expression for the gravitational field at point \mathcal{O} in Figure 1, along the bisector of the line segment connecting two identical stars, masses $m_{1}=m_{2}=$ m, that are separated by distance $2 a$.
[Solution]

Figure 1: Problem 2
3. (10 points.) Four identical stars, each of mass m, are positioned at the corners of a square of edge length L.
(a) Find the gravitational potential at a distance very far away from the square, that is, at infinity.
(b) Find the gravitational potential at the center of the square.
(c) Find the gravitational potential at the center of one of the edges of the square.
(d) How much work is done by the gravitational forces when a mass M is moved from infinity to the center of the square?
[Solution]
4. (10 points.) Three identical stars, of mass m each, are positioned at the corners of an equilateral triangle of edge length a. Find the expression for the gravitational potential energy of this three-body configuration up to a constant.
[Solution, 2023S FE P07]

