Homework No. 12 (Spring 2024)
 PHYS 205A-001: UNIVERSITY PHYSICS
 School of Physics and Applied Physics, Southern Illinois University-Carbondale

 Due date: Wednesday, 2024 Apr 17, 12:00 PM, on D2L
Instructions

- You are encouraged to use any of the resources to complete this homework. However, the extent to which you depend on resources while doing this homework is a measure of how much extra work you need to put in to master the associated concepts. Solutions should be the last resource.
- Links to solutions are provided. Further, links to few variations of the problem are provided that serve as practice problems.
- Describe your thought process in detail and organize it clearly. Make sure your answer has units and right number of significant digits.
- After completion, scan the pages as a single PDF file, and submit the file on D2L (under Assesments \rightarrow Assignments). You can replace your PDF file, only the last file is graded.

Problems

1. ($\mathbf{1 0}$ points.) A circular disc in the $x y$ plane rotates about the z axis. This rotation is described by the angular velocity vector

$$
\begin{equation*}
\boldsymbol{\omega}=\hat{\mathbf{z}} \omega, \tag{1}
\end{equation*}
$$

where $\omega=75$ radians/s is the magnitude of the vector and represents the angular speed. Given the relation,

$$
\begin{equation*}
\mathbf{v}=\boldsymbol{\omega} \times \mathbf{r}, \tag{2}
\end{equation*}
$$

where \mathbf{r} is the position and \mathbf{v} is the linear velocity of a point on the disc, find the linear velocity of a point on the disc at

$$
\begin{equation*}
\mathbf{r}=\hat{\mathbf{x}} 0.20 \mathrm{~m} . \tag{3}
\end{equation*}
$$

[Solution]

2. (10 points.) Starting from rest a wheel rotates with uniform angular acceleration $3.0 \mathrm{rad} / \mathrm{s}^{2}$. Determine the instantaneous angular velocity of the wheel after 3.0 s .
[Solution]
3. ($\mathbf{1 0}$ points.) The angular position of a point on the rim of a rotating wheel is given by $\theta=4.0 t-2.0 t^{2}+t^{3}$, where θ is in radians and t is in seconds.
(a) Determine the angular velocity at $t=6.0 \mathrm{~s}$.
(b) Determine the instantaneous angular acceleration at $t=6.0 \mathrm{~s}$.
[Solution]
4. (10 points.) A motorcycle accelerates uniformly from rest and reaches a linear speed of $24.0 \mathrm{~m} / \mathrm{s}$ in a time of 8.00 s . The radius of each tire is 0.300 m . What is the magnitude of the angular acceleration of each tire?
[Solution, 2022S FE P05, 2021S FE P08]
