Homework No. 11 (Spring 2024)
 PHYS 205A-001: UNIVERSITY PHYSICS

School of Physics and Applied Physics, Southern Illinois University-Carbondale
Due date: Wednesday, 2024 Apr 10, 12:00 PM, on D2L

Instructions

- You are encouraged to use any of the resources to complete this homework. However, the extent to which you depend on resources while doing this homework is a measure of how much extra work you need to put in to master the associated concepts. Solutions should be the last resource.
- Links to solutions are provided. Further, links to few variations of the problem are provided that serve as practice problems.
- Describe your thought process in detail and organize it clearly. Make sure your answer has units and right number of significant digits.
- After completion, scan the pages as a single PDF file, and submit the file on D2L (under Assesments \rightarrow Assignments). You can replace your PDF file, only the last file is graded.

Problems

1. ($\mathbf{1 0}$ points.) A ball having a mass of 150 g strikes a wall with a speed of $5.0 \mathrm{~m} / \mathrm{s}$ and rebounds with only 50% of its initial kinetic energy.
(a) What is the speed of the ball immediately after rebounding?
(b) If the ball was in contact with the wall for 8.0 ms , what was the magnitude of the average force on the ball from the wall during this time interval?

[Solution]

2. ($\mathbf{1 0}$ points.) A shooter of mass 90.0 kg shoots a bullet of mass 3.00 g in a direction 60.0° with respect to the horizontal, standing on a frictionless surface at rest. If the muzzle velocity of the bullet is $600.0 \mathrm{~m} / \mathrm{s}$, what is the recoil speed of the shooter?
[Solution, 2018S MT-03 P05, 2014F MT-03 P04]
3. ($\mathbf{1 0}$ points.) A car of mass $m_{1}=2000.0 \mathrm{~kg}$ is moving at speed $v_{1 i}=35.0 \mathrm{~m} / \mathrm{s}$ towards East. A truck of mass $m_{2}=5000.0 \mathrm{~kg}$ is moving at speed $v_{2 i}=25.0 \mathrm{~m} / \mathrm{s}$ towards South. They collide at an intersection and get entangled (complete inelastic collision). What is the magnitude and direction of the final velocity of the entangled automobiles?
[Solution, 2023S MT-03 P06, 2022F MT-03 P07, 2021S MT-03 P07, 2016F MT-03 P05]
4. ($\mathbf{1 0}$ points.) Two masses, $m_{1}=1.0 \mathrm{~kg}$ and $m_{2}=2.0 \mathrm{~kg}$ are hanging off separate strings. Forst mass m_{1} is pulled to a height $h_{1}=1.0 \mathrm{~m}$ and dropped. It swings down and collides with the other hanging mass (m_{2} at rest) and they stick to each other (complete inelastic collision). See Figure 1. The collision happens in a plane. How high do the masses rise together after the collision.

Figure 1: Problem 4.

[Solution]

5. (10 points.) What is the ratio of the final kinetic energy to initial kinetic energy in a perfectly inelastic collision involving two particles of masses m and M when the mass M is initially at rest? Express your answer in terms of m and M.
[Solution]
6. ($\mathbf{1 0}$ points.) A mass $m_{1}=100 . \mathrm{kg}$ moving with a speed $v_{1 i}=+10 . \mathrm{m} / \mathrm{s}$ (elastically) collides with another mass $m_{2}=1.0 \mathrm{~kg}$ initially at rest. Determine the magnitude and direction of the final velocities of the masses after collision.
[Solution, 2022S MT-03 P06, 2021S MT-03 P08, 2016F MT-03 P06, 2015F MT-03 P07]
7. ($\mathbf{1 0}$ points.) Consider a thin rod of length $L=1.0 \mathrm{~m}$ placed on the positive x-axis with one end at the origin. It has mass per unit length, $d m / d x$, described by

$$
\begin{equation*}
\rho(x)=a+b x+c x^{2}, \quad a=0 \quad b=1.0 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}}, \quad c=-0.80 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}, \tag{1}
\end{equation*}
$$

where x is the distance from end placed at the origin. At what distance from the end placed at the origin is the center of of mass of the rod?
[Solution, 2023F MT-03 P07, 2022S MT-03 P07, 2017F MT-03 P06, 2016F MT-03 P08, 2015F MT-03 P08, 2014F MT-03 P08]

