Homework No. 11 (Spring 2024) PHYS 205A-001: UNIVERSITY PHYSICS

School of Physics and Applied Physics, Southern Illinois University-Carbondale Due date: Wednesday, 2024 Apr 10, 12:00 PM, on D2L

Instructions

- You are encouraged to use any of the resources to complete this homework. However, the extent to which you depend on resources while doing this homework is a measure of how much extra work you need to put in to master the associated concepts. Solutions should be the last resource.
- Links to solutions are provided. Further, links to few variations of the problem are provided that serve as practice problems.
- Describe your thought process in detail and organize it clearly. Make sure your answer has units and right number of significant digits.
- After completion, scan the pages as a single PDF file, and submit the file on D2L (under Assessments → Assignments). You can replace your PDF file, only the last file is graded.

Problems

- 1. (10 points.) A ball having a mass of 150 g strikes a wall with a speed of 5.0 m/s and rebounds with only 50% of its initial kinetic energy.
 - (a) What is the speed of the ball immediately after rebounding?
 - (b) If the ball was in contact with the wall for 8.0 ms, what was the magnitude of the average force on the ball from the wall during this time interval?

[Solution]

- 2. (10 points.) A shooter of mass 90.0 kg shoots a bullet of mass 3.00 g in a direction 60.0° with respect to the horizontal, standing on a frictionless surface at rest. If the muzzle velocity of the bullet is 600.0 m/s, what is the recoil speed of the shooter?
 - [Solution, 2018S MT-03 P05, 2014F MT-03 P04]
- 3. (10 points.) A car of mass $m_1 = 2000.0 \,\mathrm{kg}$ is moving at speed $v_{1i} = 35.0 \,\mathrm{m/s}$ towards East. A truck of mass $m_2 = 5000.0 \,\mathrm{kg}$ is moving at speed $v_{2i} = 25.0 \,\mathrm{m/s}$ towards South. They collide at an intersection and get entangled (complete inelastic collision). What is the magnitude and direction of the final velocity of the entangled automobiles?
 - [Solution, 2023S MT-03 P06, 2022F MT-03 P07, 2021S MT-03 P07, 2016F MT-03 P05]

4. (10 points.) Two masses, $m_1 = 1.0 \,\mathrm{kg}$ and $m_2 = 2.0 \,\mathrm{kg}$ are hanging off separate strings. Forst mass m_1 is pulled to a height $h_1 = 1.0 \,\mathrm{m}$ and dropped. It swings down and collides with the other hanging mass (m_2 at rest) and they stick to each other (complete inelastic collision). See Figure 1. The collision happens in a plane. How high do the masses rise together after the collision.

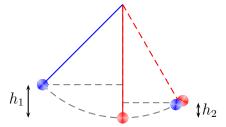


Figure 1: Problem 4.

[Solution]

5. (10 points.) What is the ratio of the final kinetic energy to initial kinetic energy in a perfectly inelastic collision involving two particles of masses m and M when the mass M is initially at rest? Express your answer in terms of m and M.

[Solution]

6. (10 points.) A mass $m_1 = 100$ kg moving with a speed $v_{1i} = +10$ m/s (elastically) collides with another mass $m_2 = 1.0$ kg initially at rest. Determine the magnitude and direction of the final velocities of the masses after collision.

[Solution, 2022S MT-03 P06, 2021S MT-03 P08, 2016F MT-03 P06, 2015F MT-03 P07]

7. (10 points.) Consider a thin rod of length L = 1.0 m placed on the positive x-axis with one end at the origin. It has mass per unit length, dm/dx, described by

$$\rho(x) = a + bx + cx^2, \qquad a = 0 \qquad b = 1.0 \frac{\text{kg}}{\text{m}^2}, \qquad c = -0.80 \frac{\text{kg}}{\text{m}^3}, \tag{1}$$

where x is the distance from end placed at the origin. At what distance from the end placed at the origin is the center of of mass of the rod?

[Solution, 2023F MT-03 P07, 2022S MT-03 P07, 2017F MT-03 P06, 2016F MT-03 P08, 2015F MT-03 P08, 2014F MT-03 P08]