Homework No. 07 (Spring 2024)
 PHYS 205A-001: UNIVERSITY PHYSICS

School of Physics and Applied Physics, Southern Illinois University-Carbondale
Due date: Wednesday, 2024 Feb 28, 12:00 PM, on D2L

Instructions

- You are encouraged to use any of the resources to complete this homework. However, the extent to which you depend on resources while doing this homework is a measure of how much extra work you need to put in to master the associated concepts. Solutions should be the last resource.
- Links to solutions are provided. Further, links to few variations of the problem are provided that serve as practice problems.
- Describe your thought process in detail and organize it clearly. Make sure your answer has units and right number of significant digits.
- After completion, scan the pages as a single PDF file, and submit the file on D2L (under Assesments \rightarrow Assignments). You can replace your PDF file, only the last file is graded.

Problems

1. ($\mathbf{1 0}$ points.) Mass of Jupiter is 320 times larger than that of Earth. If you are given that the acceleration due to gravity on Jupiter is 2.4 times larger than that on Earth, then what can you conclude about the radius of Jupiter.
[Solution, 2021S MT02 P05]
2. ($\mathbf{1 0}$ points.) A body of mass $m=10.0 \mathrm{~kg}$ rests on a weighing scale on a horizontal table.
(a) Determine the magnitude of the normal force acting on the mass.
(b) Determine the magnitude of the normal force acting on the mass while you pull on it vertically upwards with a force of 20 N . Determine the reading on the scale.

[Solution]

3. ($\mathbf{1 0}$ points.) Your mass is 75 kg . How much will you weigh on a bathroom scale (designed to measure the normal force in Newtons) inside an elevator that is
(a) at rest?
(b) moving upward at constant speed?
(c) slowing down at $2.0 \mathrm{~m} / \mathrm{s}^{2}$ while moving upward?
[Solution, 2023F MT02 P05, 2023S MT02 P01, 2023S MT02 P05, 2022F MT02 P05, 2022S MT02 P04, 2018S MT02 P02, 2017F MT02 P03, 2015F MT02 P06]
4. ($\mathbf{1 0}$ points.) A student is skateboarding down a ramp that is 6.0 m long and inclined at 15° with respect to the horizontal. The initial speed of the skateboarder at the top of the ramp is $3.0 \mathrm{~m} / \mathrm{s}$. Neglect friction. See Figure 1.

Figure 1: Problem 4.
(a) Identify the forces acting on the student. Choose a coordinate system such that the acceleration is along one of the axis. Draw a force diagram. That is, identify the forces.
(b) Determine the acceleration of the student.
(c) Find the speed of the student at the bottom of the ramp.
(d) Determine the time taken by the student to reach the bottom of the ramp.
[Solution, 2023F MT02 P06, 2021S MT02 P06, 2017F MT02 P03, 2017F MT02 P07, 2015F MT02 P02, 2014F MT02 P02]
5. (10 points.) Three masses $m_{1}=10.0 \mathrm{~kg}, m_{2}=20.0 \mathrm{~kg}$, and $m_{3}=30.0 \mathrm{~kg}$, are stacked together on a frictionless plane. A force \mathbf{F} is exerted on m_{1}.

Figure 2: Problem 5.
(a) Identify the forces acting on each of the three masses.
(b) Using Newton's law determine the equations of motion for all three masses. If $C_{i j}$ are contact forces acting on mass i by mass j, determine C_{12}. Let $F=180 \mathrm{~N}$.
[Solution, 2023F MT-02 P03, 2022S MT02 P05]
6. (10 points.) The Atwood machine consists of two masses m_{1} and m_{2} connected by a massless (inextensible) string passing over a massless pulley. See Figure 3.

Figure 3: Problem 6
(a) Identify the forces acting on each of the two masses.
(b) Using Newton's law determine the equations of motion for all the masses.
(c) Determine the expression for the tension in the string.
[Solution, 2017F MT02 P04, 2014F MT02 P04]
7. ($\mathbf{1 0}$ points.) A mass is held above ground using two ropes as described in Figure 4. Let $m=20.0 \mathrm{~kg}, \theta_{1}=30.0^{\circ}$, and $\theta_{2}=45.0^{\circ}$.

Figure 4: Problem 7.
(a) Identify the forces acting on the masses.
(b) Using Newton's law determine the equations of motion for the mass.
(c) Find the tension in each of the strings.
[Solution, 2017F MT02 P05, 2016F MT02 P05, 2015F MT02 P04, 2014F MT02 P03]
8. ($\mathbf{1 0}$ points.) A mass $m_{2}=2.0 \mathrm{~kg}$ is connected to another mass $m_{1}=1.0 \mathrm{~kg}$ by a massless (inextensible) string passing over a massless pulley, as described in Figure 5. Surfaces are frictionless.

Figure 5: Problem 8
(a) Identify the forces acting on both the masse.
(b) Using Newton's law determine the equations of motion for each of the masses.
(c) Determine the acceleration of the masses.
[Solution, 2023S MT02 P06, 2018S MT02 P03]

