Homework No. 02 (Spring 2024)

PHYS 205A-001: UNIVERSITY PHYSICS
School of Physics and Applied Physics, Southern Illinois University-Carbondale Due date: Monday, 2024 Jan 29, 12:00 PM, on D2L

Instructions

- You are encouraged to use any of the resources to complete this homework. However, the extent to which you depend on resources while doing this homework is a measure of how much extra work you need to put in to master the associated concepts. Solutions should be the last resource.
- Links to solutions are provided. Further, links to few variations of the problem are provided that serve as practice problems.
- Describe your thought process in detail and organize it clearly. Make sure your answer has units and right number of significant digits.
- After completion, scan the pages as a single PDF file, and submit the file on D2L (under Assesments \rightarrow Assignments). You can replace your PDF file, only the last file is graded.

Problems

1. ($\mathbf{1 0}$ points.) Motion of an object moving with uniform velocity is described by the equation

$$
\begin{equation*}
x=v t \tag{1}
\end{equation*}
$$

where x is the position of the object, v is the velocity of the object, and t is time.
(a) Plot x versus t for $v=3.0 \mathrm{~m} / \mathrm{s}$. Give a real life example that is described by this scenario.
(b) Plot x versus t for $v=-3.0 \mathrm{~m} / \mathrm{s}$. Give a real life example that is described by this scenario.
(c) What is the acceleration of the object for these cases?

[Solution]

2. (10 points.) Motion of an object moving with uniform acceleration, with intial velocity v_{0}, is described by the equation

$$
\begin{equation*}
x=v_{0} t+\frac{1}{2} a t^{2}, \tag{2}
\end{equation*}
$$

where x is the position of the object, a is the acceleration of the object, and t is time.
(a) Plot x versus t for $v_{0}=0$ and $a=2.0 \mathrm{~m} / \mathrm{s}^{2}$. Give a real life example that is described by this scenario.
(b) Plot x versus t for $v_{0}=0$ and $a=-2.0 \mathrm{~m} / \mathrm{s}^{2}$. Give a real life example that is described by this scenario.
(c) Plot x versus t for $v_{0}=+1.0 \mathrm{~m} / \mathrm{s}$ and $a=2.0 \mathrm{~m} / \mathrm{s}^{2}$. Give a real life example that is described by this scenario.
(d) Plot x versus t for $v_{0}=+1.0 \mathrm{~m} / \mathrm{s}$ and $a=-2.0 \mathrm{~m} / \mathrm{s}^{2}$. Give a real life example that is described by this scenario.
(e) Plot x versus t for $v_{0}=-1.0 \mathrm{~m} / \mathrm{s}$ and $a=2.0 \mathrm{~m} / \mathrm{s}^{2}$. Give a real life example that is described by this scenario.
(f) Plot x versus t for $v_{0}=-1.0 \mathrm{~m} / \mathrm{s}$ and $a=-2.0 \mathrm{~m} / \mathrm{s}^{2}$. Give a real life example that is described by this scenario.
[Solution, 2022S MT-01 P02]
3. ($\mathbf{1 0}$ points.) A particle's velocity is given by

$$
\begin{equation*}
v(t)=v_{0}+a_{0} t+\frac{1}{2} b_{0} t^{2} \tag{3}
\end{equation*}
$$

(a) Determine the particle's acceleration as a function of time.
(b) Determine the particle's rate of change of acceleration as a function of time.
(c) Given the particle starts from rest at $t=0$, determine the velocity of the particle when the instantaneous acceleration of the particle is zero.
[Solution, 2022S MT-01 P04, 2021S MT-01 P08, 2018S MT-01 P02, 2017F-001 MT-01 P02, 2017F-002 MT-01 P02, 2016F MT-01 P02, 2015F MT-01 P03, 2014F MT-01 P04]
4. ($\mathbf{1 0}$ points.) The position of a particle x as a function of time t is given by

$$
\begin{equation*}
x(t)=3 \alpha t-\frac{\alpha}{\tau^{2}} t^{3}, \tag{4}
\end{equation*}
$$

where α and τ are constants. Determine the magnitude of the acceleration of the particle when it momentarily stops.
[2021S MT-01 P08, 2017F-001 MT-01 P02, 2017F-002 MT-01 P02, 2016F MT-01 P02, 2015F MT-01 P03, 2014F MT-01 P04]
5. (10 points.) While standing on a 50.0 m tall building you throw a stone straight upwards at a speed of $15 \mathrm{~m} / \mathrm{s}$.
(a) How long does the stone take to reach the ground?
(b) How high above the building does the stone reach?
[Solution, 2023F MT-01 P05, 2023S MT-01 P05, 2022F MT-01 P03, 2022F FE P01, 2022S MT-01 P05, 2022S FE P01, 2021S FE P01, 2018S MT-01 P03, 2017F-001 MT-01 P04, 2017F-002 MT-01 P04, 2017F-002 MT-01 P05, 2016F MT-01 P05, 2014F MT-01 P02, 2014F MT-01 P03]
6. ($\mathbf{1 0}$ points.) A fish is dropped by a pelican that is rising steadily at a speed $4.0 \mathrm{~m} / \mathrm{s}$. Determine the time taken for the fish to reach the water 15.0 m below. How high above the water is the pelican when the fish reaches the water?
[Solution, 2021S MT-01 P07, 2018S MT-01 P04]
7. ($\mathbf{1 0}$ points.) A car is traveling at $10.0 \mathrm{~m} / \mathrm{s}$, and the driver sees a traffic light turn red. After 0.500 s (the reaction time), the driver applies the brakes, and the car decelerates at $8.00 \mathrm{~m} / \mathrm{s}^{2}$. What is the stopping distance of the car, as measured from the point where the driver first sees the red light?
[Solution, 2017F-001 MT-01 P03, 2017F-002 MT-01 P03, 2016F MT-01 P03, 2015F MT-01 P04]
8. ($\mathbf{1 0}$ points.) A speeding car is moving at a constant speed of $v=80.0 \mathrm{miles} / \mathrm{hour}$ $(35.8 \mathrm{~m} / \mathrm{s})$. A police car is initially at rest. As soon as the speeder crosses the police car the cop starts chasing the speeder at a constant acceleration of $a=2.0 \mathrm{~m} / \mathrm{s}^{2}$. Determine the time it takes for the cop to catch up with the speeder. Determine the distance traveled by the cop in this time.
[Solution 2016F MT-01 P04, 2015F MT-01 P05, 2014F FE P01]
9. (10 points.) A key falls from a bridge that is 50.0 m above the water. It falls directly into a boat that is moving with constant velocity, that was 10.0 m from the point of impact when the key was released. What is the speed of the boat?

[Solution]

10. (10 points.) Imagine that a man is running at a uniform speed $v=7.0 \mathrm{~m} / \mathrm{s}$ to catch a bus that is stopped at a traffic light. When he is still a distance $d=10 \mathrm{~m}$ from the bus, the bus starts to move away with a constant acceleration $a=2.0 \mathrm{~m} / \mathrm{s}^{2}$. How long after the bus starts to move will the man catch the bus? Assume that the motion of the man and the bus is along a straight road. The cross in Figure 1 illustrates the point where the man catches the bus.

Figure 1: Problem 10.
[Solution, 2022F MT-01 P06]

