Homework No. 10 (2022 Spring) PHYS 520B: ELECTROMAGNETIC THEORY

Department of Physics, Southern Illinois University-Carbondale
Due date: Thursday, 2022 Apr 21, 12.30pm

1. (20 points.) The magnetic field associated to radiation fields, in the frequency domain, is given by

$$
\begin{equation*}
c \mathbf{B}(\mathbf{r}, \omega)=-\hat{\mathbf{r}} \times \mathbf{F}(\theta, \phi ; \omega) \frac{e^{i k r}}{r} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{F}(\theta, \phi ; \omega)=\frac{\mu_{0}}{4 \pi}(-i \omega) \mathbf{J}(\mathbf{k}, \omega) \tag{2}
\end{equation*}
$$

where we have used the notation

$$
\begin{equation*}
\mathbf{k}=\frac{\omega}{c} \hat{\mathbf{r}} . \tag{3}
\end{equation*}
$$

for insight in the context of Fourier transformation. The associated electric field is given by

$$
\begin{equation*}
\mathbf{E}(\mathbf{r}, \omega)=-\hat{\mathbf{r}} \times c \mathbf{B}(\mathbf{r}, \omega) \tag{4}
\end{equation*}
$$

and satisfies

$$
\begin{equation*}
c \mathbf{B}(\mathbf{r}, \omega)=\hat{\mathbf{r}} \times \mathbf{E}(\mathbf{r}, \omega) \tag{5}
\end{equation*}
$$

The total energy E radiated into the solid angle $d \Omega$ per unit (positive, $0 \leq \omega<\infty$) frequency range $d \omega$ is given by

$$
\begin{equation*}
\frac{\partial}{\partial \omega} \frac{\partial E}{\partial \Omega}=\frac{1}{\pi} \frac{r^{2}}{c \mu_{0}}|c \mathbf{B}(\mathbf{r}, \omega)|^{2} \tag{6}
\end{equation*}
$$

(a) Show that

$$
\begin{equation*}
\frac{\partial}{\partial \omega} \frac{\partial E}{\partial \Omega}=\frac{1}{4 \pi}\left(\frac{\mu_{0} c}{4 \pi}\right) \frac{1}{\pi}\left|\frac{\omega}{c} \hat{\mathbf{r}} \times \mathbf{J}(\mathbf{r}, \omega)\right|^{2} . \tag{7}
\end{equation*}
$$

Verify that $\omega J / c$ has the dimensions of charge. (Caution: J here is the Fourier transform of current density.) Thus, conclude that

$$
\begin{equation*}
\frac{\mu_{0} c}{4 \pi}=\frac{1}{4 \pi} \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \tag{8}
\end{equation*}
$$

has the dimensions of resistance. Quantum phenomena in electromagnetism is characterized by the Planck's constant h and the associated fine-structure constant

$$
\begin{equation*}
\alpha=\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{\hbar c}, \tag{9}
\end{equation*}
$$

a dimensionless physical constant. Verify that

$$
\begin{equation*}
\frac{\mu_{0} c}{4 \pi}=\frac{1}{4 \pi} \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}=\alpha \frac{\hbar}{e^{2}}=29.9792458 \Omega . \tag{10}
\end{equation*}
$$

(b) A loop antenna consists of a circular infinitely thin conductor of radius a carrying a time-dependent current. Let the circular conductor be centered at the origin and placed on the $x-y$ plane such that

$$
\begin{equation*}
\mathbf{J}\left(\mathbf{r}^{\prime}, t^{\prime}\right)=\hat{\phi}^{\prime} I_{0} \sin \omega_{0} t^{\prime} \delta\left(\rho^{\prime}-a\right) \delta\left(z^{\prime}\right) \tag{11}
\end{equation*}
$$

where $\rho^{\prime}=\sqrt{x^{\prime 2}+y^{\prime 2}}$ and $\hat{\phi}^{\prime}=-\hat{\mathbf{x}} \sin \phi^{\prime}+\hat{\mathbf{y}} \cos \phi^{\prime}$. Evaluate the Fourier transform of the current density using

$$
\begin{equation*}
\mathbf{J}(\mathbf{k}, \omega)=\int d^{3} r^{\prime} \int d t^{\prime} e^{-i \mathbf{k} \cdot \mathbf{r}^{\prime}} e^{i \omega t^{\prime}} \mathbf{J}\left(\mathbf{r}^{\prime}, t^{\prime}\right) \tag{12}
\end{equation*}
$$

and show that

$$
\begin{equation*}
\mathbf{J}(\mathbf{k}, \omega)=\hat{\boldsymbol{\phi}} 2 \pi^{2} a I_{0} \delta\left(\omega-\omega_{0}\right) J_{1}(k a \sin \theta) \tag{13}
\end{equation*}
$$

where $J_{n}(x)$ is the Bessel function of first kind.
Hint: You are expected to encounter the following integral

$$
\begin{equation*}
\int_{0}^{2 \pi} d \phi^{\prime} e^{-i k a \sin \theta \cos \left(\phi-\phi^{\prime}\right)}\left[-\hat{\mathbf{x}} \sin \phi^{\prime}+\hat{\mathbf{y}} \cos \phi^{\prime}\right] \tag{14}
\end{equation*}
$$

Substitute $\phi^{\prime}-\phi=\phi^{\prime \prime}$ to obtain

$$
\begin{equation*}
\hat{\boldsymbol{\phi}} \int_{0}^{2 \pi} d \phi^{\prime \prime} \cos \phi^{\prime \prime} e^{-i k a \sin \theta \cos \phi^{\prime \prime}}-\hat{\boldsymbol{\rho}} \int_{0}^{2 \pi} d \phi^{\prime \prime} \sin \phi^{\prime \prime} e^{-i k a \sin \theta \cos \phi^{\prime \prime}} \tag{15}
\end{equation*}
$$

Use the integrals

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{d \phi^{\prime}}{2 \pi} \cos \phi^{\prime} e^{-i x \cos \phi^{\prime}}=(-i) J_{1}(x) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{d \phi^{\prime}}{2 \pi} \sin \phi^{\prime} e^{-i x \cos \phi^{\prime}}=0 \tag{17}
\end{equation*}
$$

We also dropped the delta-function contribution associated to $\delta\left(\omega+\omega_{0}\right)$, because $0 \leq \omega<\infty$.
(c) Show that

$$
\begin{equation*}
\frac{\partial}{\partial \omega} \frac{\partial P}{\partial \Omega}=P_{0} \pi^{2}(k a)^{2} J_{1}^{2}(k a \sin \theta) \delta\left(\omega-\omega_{0}\right) \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{0}=\left(\frac{\mu_{0} c}{4 \pi}\right) I_{0}^{2} \tag{19}
\end{equation*}
$$

Here we used the interpretation

$$
\begin{equation*}
\delta\left(\omega-\omega_{0}\right) \delta\left(\omega-\omega_{0}\right)=\delta\left(\omega-\omega_{0}\right) \int_{-\infty}^{\infty} d t e^{i\left(\omega-\omega_{0}\right) t}=\delta\left(\omega-\omega_{0}\right) \int_{-\infty}^{\infty} d t=\delta\left(\omega-\omega_{0}\right) T \tag{20}
\end{equation*}
$$

where T is the infinite time for which the system is evolving. We used E / T to be the power P.
(d) Integration with respect to frequency yields the power radiated per unit solid angle

$$
\begin{equation*}
\frac{\partial P}{\partial \Omega}=P_{0} \pi^{2}(k a)^{2} J_{1}^{2}(k a \sin \theta) \tag{21}
\end{equation*}
$$

Plot the angular distribution of radiated power for $k a=0.5,2,3,4,6$. Note that

$$
\begin{equation*}
k a=\frac{\omega_{0}}{c} a=2 \pi \frac{a}{\lambda_{0}}, \tag{22}
\end{equation*}
$$

where λ_{0} is the wavelength associated with the angular frequency ω_{0}.

