Homework No. 08 (2022 Spring)
 PHYS 520B: ELECTROMAGNETIC THEORY

Department of Physics, Southern Illinois University-Carbondale
Due date: Thursday, 2022 Apr 7, 12.30pm

1. (20 points.) A charged particle with charge q moves on the z-axis with constant speed $v, \beta=v / c$. The electric and magnetic field generated by this charged particle is given by

$$
\begin{align*}
\mathbf{E}(\mathbf{r}, t) & =\left(1-\beta^{2}\right) \frac{q}{4 \pi \varepsilon_{0}} \frac{x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+(z-v t) \hat{\mathbf{k}}}{\left[\left(x^{2}+y^{2}\right)\left(1-\beta^{2}\right)+(z-v t)^{2}\right]^{\frac{3}{2}}}, \tag{1a}\\
c \mathbf{B}(\mathbf{r}, t) & =\beta\left(1-\beta^{2}\right) \frac{q}{4 \pi \varepsilon_{0}} \frac{-y \hat{\mathbf{i}}+x \hat{\mathbf{j}}}{\left[\left(x^{2}+y^{2}\right)\left(1-\beta^{2}\right)+(z-v t)^{2}\right]^{\frac{3}{2}}} . \tag{1b}
\end{align*}
$$

Evaluate the electromagnetic momentum density for this configuration by evaluating

$$
\begin{equation*}
\mathbf{G}(\mathbf{r}, t)=\varepsilon_{0} \mathbf{E}(\mathbf{r}, t) \times \mathbf{B}(\mathbf{r}, t) . \tag{2}
\end{equation*}
$$

2. (20 points.) The electric and magnetic field generated by a particle with charge q moving along the z axis with speed $v, \beta=v / c$, can be expressed in the form

$$
\begin{align*}
\mathbf{E}(\mathbf{r}, t) & =\frac{q}{4 \pi \varepsilon_{0}} \frac{[x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+(z-v t) \hat{\mathbf{k}}]}{\left(x^{2}+y^{2}\right)} \frac{\left(x^{2}+y^{2}\right)\left(1-\beta^{2}\right)}{\left[\left(x^{2}+y^{2}\right)\left(1-\beta^{2}\right)+(z-v t)^{2}\right]^{\frac{3}{2}}}, \tag{3a}\\
c \mathbf{B}(\mathbf{r}, t) & =\boldsymbol{\beta} \times \mathbf{E}(\mathbf{r}, t) . \tag{3b}
\end{align*}
$$

(a) Consider the distribution

$$
\begin{equation*}
\delta(x)=\lim _{\epsilon \rightarrow 0} \frac{1}{2} \frac{\epsilon}{\left(x^{2}+\epsilon\right)^{\frac{3}{2}}} . \tag{4}
\end{equation*}
$$

Show that

$$
\delta(x)\left\{\begin{array}{lll}
\rightarrow \frac{1}{2 \sqrt{\epsilon}} \rightarrow \infty, & \text { if } & x=0 \tag{5}\\
\rightarrow \frac{\epsilon}{2 x^{3}} \rightarrow 0, & \text { if } & x \neq 0
\end{array}\right.
$$

Further, show that

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x \delta(x)=1 \tag{6}
\end{equation*}
$$

(b) Thus, verify that the electric and magnetic field of a charge approaching the speed of light can be expressed in the form

$$
\begin{align*}
& \mathbf{E}(\mathbf{r}, t)=\frac{2 q}{4 \pi \varepsilon_{0}} \frac{\hat{\boldsymbol{\rho}}}{\rho} \delta(z-c t) \tag{7a}\\
& \mathbf{B}(\mathbf{r}, t)=\frac{1}{c} \frac{2 q}{4 \pi \varepsilon_{0}} \frac{\hat{\boldsymbol{\phi}}}{\rho} \delta(z-c t)=2 q\left(\frac{\mu_{0} c}{4 \pi}\right) \frac{\hat{\boldsymbol{\phi}}}{\rho} \delta(z-c t), \tag{7b}
\end{align*}
$$

where $\boldsymbol{\rho}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}$ and $\rho=\sqrt{x^{2}+y^{2}}, \boldsymbol{\phi}=-y \hat{\mathbf{i}}+x \hat{\mathbf{j}}$, and $\hat{\boldsymbol{\rho}}$ and $\hat{\boldsymbol{\phi}}$ are the associated unit vectors. These fields are confined on the $z=c t$ plane moving with speed c. Illustrate this configuration of fields using a diagram.
(c) To confirm that the above confined fields are indeed solutions to the Maxwell equations, verify the following:

$$
\begin{align*}
\boldsymbol{\nabla} \cdot \mathbf{E} & =\frac{1}{\varepsilon_{0}} q \delta^{(2)}(\boldsymbol{\rho}) \delta(z-c t), \tag{8a}\\
\boldsymbol{\nabla} \cdot \mathbf{B} & =0, \tag{8b}\\
\boldsymbol{\nabla} \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t} & =0, \tag{8c}\\
\boldsymbol{\nabla} \times \mathbf{B}-\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t} & =\mu_{0} q c \hat{\mathbf{z}} \delta^{(2)}(\boldsymbol{\rho}) \delta(z-c t) . \tag{8d}
\end{align*}
$$

This is facilitated by writing

$$
\begin{equation*}
\boldsymbol{\nabla}=\boldsymbol{\nabla}_{\rho}+\hat{\mathbf{z}} \frac{\partial}{\partial z}, \tag{9}
\end{equation*}
$$

and accomplished by using the following identities:

$$
\begin{array}{ll}
\nabla_{\rho} \cdot\left(\frac{\hat{\boldsymbol{\rho}}}{\rho}\right)=2 \pi \delta^{(2)}(\boldsymbol{\rho}), & \nabla_{\rho} \times\left(\frac{\hat{\boldsymbol{\rho}}}{\rho}\right)=0 \\
\nabla_{\rho} \cdot\left(\frac{\hat{\boldsymbol{\phi}}}{\rho}\right)=0, & \nabla_{\rho} \times\left(\frac{\hat{\boldsymbol{\phi}}}{\rho}\right)=\hat{\mathbf{z}} 2 \pi \delta^{(2)}(\boldsymbol{\rho}) \tag{10b}
\end{array}
$$

