
Homework No. 05 (2022 Spring)
PHYS 520B: ELECTROMAGNETIC THEORY

Department of Physics, Southern Illinois University–Carbondale

Due date: Tuesday, 2022 Mar 15, 12.30pm

1. (100 points.) Relativisitic kinematics is constructed in terms of the proper time element
ds, which remains unchanged under a Lorentz transformation,

− ds2 = −c2dt2 + dx · dx. (1)

Here x and t are the position and time of a particle. They are components of a vector
under Lorentz transformation and together constitute the position four-vector

xα = (ct,x). (2)

(a) Velocity: The four-vector associated with velocity is constructed as

uα = c
dxα

ds
. (3)

i. Using Eq. (1) deduce

γds = cdt, where γ =
1

√

1− β2
, β =

v

c
, v =

dx

dt
. (4)

Then, show that
uα = (cγ,vγ). (5)

Here v is the velocity that we use in Newtonian physics.

ii. Further, show that
uαuα = −c2. (6)

Thus, conclude that the velocity four-vector is a time-like vector. What is the
physical implication of this statement for a particle?

iii. Write down the form of the velocity four-vector in the rest frame of the particle?

(b) Momentum: Define momentum four-vector in terms of the mass m of the particle as

pα = muα = (mcγ,mvγ). (7)

Connection with the physical quantities associated to a moving particle, the energy
and momentum of the particle, is made by identifying (or defining)

pα =

(

E

c
,p

)

, (8)
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which corresponds to the definitions

E = mc2γ, (9a)

p = mvγ, (9b)

for energy and momentum, respectively. Discuss the non-relativistic limits of these
quantities. Evaluate

pαpα = −m2c2. (10)

Thus, derive the energy-momentum relation

E2 − p2c2 = m2c4. (11)

(c) Acceleration: The four-vector associated with acceleration is constructed as

aα = c
duα

ds
. (12)

i. Show that

aα = γ

(

c
dγ

dt
,v

dγ

dt
+ γa

)

, (13)

where

a =
dv

dt
(14)

is the acceleration that we use in Newtonian physics.

ii. Starting from Eq. (6) and taking derivative with respect to proper time show
that

uαaα = 0. (15)

Thus, conclude that four-acceleration is space-like.

iii. Further, using the explicit form of uαaα in Eq. (15) derive the identity

dγ

dt
=

(v · a

c2

)

γ3. (16)

iv. Show that
aα =

(v · a

c
γ4, aγ2 +

v

c

v · a

c
γ4

)

(17)

v. Write down the form of the acceleration four-vector in the rest frame (v = 0) of
the particle as (0, a0), where

a0 = a
∣

∣

rest frame
(18)

is defined as the proper acceleration. Note that the proper acceleration is a
Lorentz invariant quantity, that is, independent of which observer makes the
measurement.
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vi. Evaluate the following identities involving the proper acceleration

aαaα = a0 · a0 =

[

a · a+
(v · a

c

)2

γ2

]

γ4 =

[

a · a−

(

v × a

c

)2
]

γ6. (19)

vii. In a particular frame, if v || a (corresponding to linear motion), deduce

|a0| = |a|γ3. (20)

And, in a particular frame, if v ⊥ a (corresponding to circular motion), deduce

|a0| = |a|γ2. (21)

(d) Force: The force four-vector is defined as

fα = c
dpα

ds
=

(

γ

c

dE

dt
,Fγ

)

, (22)

where the force F, identified (or defined) as

F =
dp

dt
, (23)

is the force in Newtonian physics. Starting from Eq. (10) derive the relation

dE

dt
= F · v (24)

which is the power output or the rate of work done by the force F on the particle.

(e) Equations of motion: The relativistic generalization of Newton’s laws are

fα = maα. (25)

Show that these involve the relations

F = maγ +mv
v · a

c2
γ3, (26a)

dE

dt
= F · v = mv · aγ3. (26b)

Discuss the non-relativistic limits of the equations of motion.

2. (30 points.) The path of a relativistic particle 1 moving along a straight line with
constant (proper) acceleration g is described by the equation of a hyperbola

z1(t) =
√

c2t2 + z20 , z0 =
c2

g
. (27)

This is the motion of a particle that comes to existance at z1 = +∞ at t = −∞, then
‘falls’ with constant (proper) acceleration g. If we choose xq(0) = 0 and yq(0) = 0, the
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particle ‘falls’ keeping itself on the z-axis, comes to stop at z = z0, and then returns back
to infinity. Consider another relavistic particle 2 undergoing hyperbolic motion given by

z2(t) = −
√

c2t2 + z2
0
, z0 =

c2

g
. (28)

This is the motion of a particle that comes to existance at z2 = −∞ at t = −∞, then
‘falls’ with constant (proper) acceleration g. If we choose xq(0) = 0 and yq(0) = 0, the
particle ‘falls’ keeping itself on the z-axis, comes to stop at z = −z0, and then returns
back to negative infinity. The world-line of particle 1 is the blue curve in Figure 2, and
the world-line of particle 2 is the red curve in Figure 2. Using geometric (diagrammatic)
arguments might be easiest to answer the following. Imagine the particles are sources of
light (imagine a flash light pointing towards origin).

z
z0−z0

z

ct

z0−z0

z1(t)z2(t)

Figure 1: Problem 2

(a) At what time will the light from particle 1 first reach particle 2? Where are the
particles when this happens?

(b) At what time will the light from particle 2 first reach particle 1? Where are the
particles when this happens?

(c) Can the particles communicate with each other?

(d) Can the particles ever detect the presence of the other? In other words, can one
particle be aware of the existence of the other? What can you deduce about the
observable part of our universe from this analysis?

4


