Homework No. 02 (2022 Spring)
 PHYS 520B: ELECTROMAGNETIC THEORY

Department of Physics, Southern Illinois University-Carbondale
Due date: Tuesday, 2022 Feb 1, 4.30pm

1. (20 points.) Consider a charge distribution consisting of two point charges with charges equal in magnitude and opposite in sign. The positive charge $+q$ is fixed at position $\mathbf{a}=a \hat{\mathbf{z}}$ on the z axis, and the negative charge $-q$ is fixed at the origin, such that the two charges have a dipole moment $\mathbf{p}=q \mathbf{a}$. The electric field for the configuration is given by

$$
\begin{equation*}
\mathbf{E}(\mathbf{r})=\frac{q}{4 \pi \varepsilon_{0}} \frac{(\mathbf{r}-\mathbf{a})}{|\mathbf{r}-\mathbf{a}|^{3}}-\frac{q}{4 \pi \varepsilon_{0}} \frac{\hat{\mathbf{r}}}{r^{2}} \tag{1}
\end{equation*}
$$

and the magnetic field $\mathbf{B}=0$ everywhere.
(a) Starting from the equation for conservation of electromagnetic linear momentum,

$$
\begin{equation*}
\frac{\partial \mathbf{G}}{\partial t}+\boldsymbol{\nabla} \cdot \mathbf{T}+\mathbf{f}=0 \tag{2}
\end{equation*}
$$

infer that total force along the direction of $\hat{\mathbf{z}}$ on the charges inside volume V is given by

$$
\begin{equation*}
\mathbf{F} \cdot \hat{\mathbf{z}}=\int_{V} d^{3} r \mathbf{f} \cdot \hat{\mathbf{z}}=-\oint_{V} d a \hat{\mathbf{r}} \cdot \mathbf{T} \cdot \hat{\mathbf{z}} . \tag{3}
\end{equation*}
$$

(b) Let us choose the volume V to be a sphere of radius r centered at the negative charge. Thus, the points on the surface of this sphere satisfy

$$
\begin{equation*}
|\mathbf{r}|=r \tag{4}
\end{equation*}
$$

Let $r \ll a$. Show that on the surface of volume V

$$
\begin{equation*}
\mathbf{E}=-\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{a^{2}}\left[\frac{a^{2}}{r^{2}} \hat{\mathbf{r}}+\hat{\mathbf{z}}+\mathcal{O}\left(\frac{r}{a}\right)\right] . \tag{5}
\end{equation*}
$$

Using $\hat{\mathbf{r}} \cdot \hat{\mathbf{z}}=\cos \theta$ show that

$$
\begin{align*}
& \hat{\mathbf{r}} \cdot \mathbf{E}=-\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{a^{2}}\left[\frac{a^{2}}{r^{2}}+\cos \theta+\mathcal{O}\left(\frac{r}{a}\right)\right], \tag{6a}\\
& \mathbf{E} \cdot \hat{\mathbf{z}}=-\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{a^{2}}\left[\frac{a^{2}}{r^{2}} \cos \theta+1+\mathcal{O}\left(\frac{r}{a}\right)\right] . \tag{6b}
\end{align*}
$$

Verify that

$$
\begin{align*}
& (\mathbf{E} \cdot \mathbf{D})(\hat{\mathbf{r}} \cdot \hat{\mathbf{z}})=\frac{1}{4 \pi} \frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{a^{4}}\left[\cos \theta \frac{a^{4}}{r^{4}}+2 \cos ^{2} \theta \frac{a^{2}}{r^{2}}+\mathcal{O}\left(\frac{a}{r}\right)\right], \tag{7a}\\
& (\hat{\mathbf{r}} \cdot \mathbf{E})(\mathbf{D} \cdot \hat{\mathbf{z}})=\frac{1}{4 \pi} \frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{a^{4}}\left[\cos \theta \frac{a^{4}}{r^{4}}+\cos ^{2} \theta \frac{a^{2}}{r^{2}}+\frac{a^{2}}{r^{2}}+\mathcal{O}\left(\frac{a}{r}\right)\right] . \tag{7b}
\end{align*}
$$

(c) Show that

$$
\begin{equation*}
\mathbf{F} \cdot \hat{\mathbf{z}}=-\int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \sin \theta d \theta r^{2}\left[\frac{1}{2}(\mathbf{E} \cdot \mathbf{D})(\hat{\mathbf{r}} \cdot \hat{\mathbf{z}})-(\hat{\mathbf{r}} \cdot \mathbf{E})(\mathbf{D} \cdot \hat{\mathbf{z}})\right] . \tag{8}
\end{equation*}
$$

We can complete the integral on the azimuth angle to obtain

$$
\begin{equation*}
\mathbf{F} \cdot \hat{\mathbf{z}}=\lim _{r \rightarrow 0} \frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{a^{2}} \int_{0}^{\pi} \sin \theta d \theta \frac{2 \pi r^{2}}{4 \pi a^{2}}\left[\cos \theta \frac{1}{2} \frac{a^{4}}{r^{4}}+\frac{a^{2}}{r^{2}}+\mathcal{O}\left(\frac{a}{r}\right)\right] . \tag{9}
\end{equation*}
$$

Thus, show that

$$
\begin{equation*}
\mathbf{F} \cdot \hat{\mathbf{z}}=\lim _{r \rightarrow 0} \frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{a^{2}} \int_{0}^{\pi} \sin \theta d \theta\left[\cos \theta \frac{1}{4} \frac{a^{2}}{r^{2}}+\frac{1}{2}\right] . \tag{10}
\end{equation*}
$$

(d) The first equality in Eq. (10) is divergent in the limit $\delta \rightarrow 0$. However it goes to zero if the θ integral is completed before taking the limit. Interpret this argument. The force on the negative charge is

$$
\begin{equation*}
\mathbf{F} \cdot \hat{\mathbf{z}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{a^{2}}, \tag{11}
\end{equation*}
$$

which is the Coulomb force.
(e) We should also be able to deduce the Coulomb law as the stress on the half-space containing one of the charges. Let us choose the volume V to be the left half space described by $z<a / 2$. Then, show that

$$
\begin{equation*}
\mathbf{F} \cdot \hat{\mathbf{z}}=-\left.\int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d y \hat{\mathbf{z}} \cdot \mathbf{T} \cdot \hat{\mathbf{z}}\right|_{z=\frac{a}{2}} \tag{12}
\end{equation*}
$$

Show that on the surface $z=a / 2$ we have

$$
\begin{equation*}
\mathbf{E}=-\frac{1}{4 \pi \varepsilon_{0}} \frac{a q \hat{\mathbf{z}}}{\left(x^{2}+y^{2}+\frac{a^{2}}{4}\right)^{\frac{3}{2}}} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\hat{\mathbf{z}} \cdot \mathbf{T} \cdot \hat{\mathbf{z}}\right|_{z=\frac{a}{2}}=-\frac{1}{2} \varepsilon_{0} E^{2} \tag{14}
\end{equation*}
$$

Thus, evaluate the stress on the half space constituting volume V to be

$$
\begin{equation*}
\mathbf{F} \cdot \hat{\mathbf{z}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{a^{2}}, \tag{15}
\end{equation*}
$$

which is consistent with the interpretation of the Coulomb force.

