Midterm Exam No. 02 (2022 Spring)
 PHYS 520B: ELECTROMAGNETIC THEORY
 Department of Physics, Southern Illinois University-Carbondale

Date: 2022 Mar 29

1. (20 points.) Prove the following. If u^{α} is a time-like vector and $u^{\alpha} a_{\alpha}=0$, then a^{α} is necessarily space-like.
2. ($\mathbf{2 0}$ points.) Lorentz transformation relates the energy E and momentum \mathbf{p} of a particle when measured in different frames. For example, for the special case when the relative velocity and the velocity of the particle are parallel we have

$$
\binom{E^{\prime} / c}{p^{\prime}}=\left(\begin{array}{cc}
\gamma & \beta \gamma \tag{1}\\
\beta \gamma & \gamma
\end{array}\right)\binom{E / c}{p} .
$$

Photons are massless spin 1 particles whose energy and momentum are $E=\hbar \omega$ and $\mathbf{p}=\hbar \mathbf{k}$, such that $\omega=k c$. Thus, derive the relativistic Doppler effect formula

$$
\begin{equation*}
\omega^{\prime}=\omega \sqrt{\frac{1+\beta}{1-\beta}} \tag{2}
\end{equation*}
$$

3. ($\mathbf{2 0}$ points.) If the motion of a non-relativistic particle is such that it does not change the kinetic energy of the particle, we have

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{1}{2} m v^{2}\right)=0 \tag{3}
\end{equation*}
$$

Show that this imples

$$
\begin{equation*}
\mathbf{v} \cdot \mathbf{a}=0 \tag{4}
\end{equation*}
$$

This is achieved when the acceleration $a=0$ or in the case of uniform circular motion. Starting from Eq. (4) show that the relativistic generalization of kinetic energy $E=m c^{2} \gamma$ is also conserved, that is,

$$
\begin{equation*}
\frac{d}{d t}\left(m c^{2} \gamma\right)=0 \tag{5}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
\boldsymbol{\beta} \cdot \mathbf{a}=\frac{d}{d t}\left(\frac{\beta^{2}}{2}\right)=-\frac{1}{2} \frac{d}{d t} \frac{1}{\gamma^{2}}=\frac{1}{\gamma^{3}} \frac{d \gamma}{d t} . \tag{6}
\end{equation*}
$$

4. (20 points.) The path of a relativistic particle moving along a straight line with constant (proper) acceleration α is described by equation of a hyperbola

$$
\begin{equation*}
z^{2}-c^{2} t^{2}=z_{0}^{2}, \quad z_{0}=\frac{c^{2}}{\alpha} \tag{7}
\end{equation*}
$$

Figure 1: Problem 4
(a) This represents the world-line of a particle thrown from $z>z_{0}$ at $t<0$ towards $z=z_{0}$ in region of constant (proper) acceleration α as described by the bold (blue) curve in the space-time diagram in Figure 4. In contrast a Newtonian particle moving with constant acceleration α is described by equation of a parabola

$$
\begin{equation*}
z-z_{0}=\frac{1}{2} \alpha t^{2} \tag{8}
\end{equation*}
$$

as described by the dashed (red) curve in the space-time diagram in Figure 4. Show that the hyperbolic curve

$$
\begin{equation*}
z=z_{0} \sqrt{1+\frac{c^{2} t^{2}}{z_{0}^{2}}} \tag{9}
\end{equation*}
$$

in regions that satisfy

$$
\begin{equation*}
t \ll \frac{c}{\alpha} \tag{10}
\end{equation*}
$$

is approximately the parabolic curve

$$
\begin{equation*}
z=z_{0}+\frac{1}{2} \alpha t^{2}+\ldots \tag{11}
\end{equation*}
$$

(b) Recognize that the proper acceleration α does not have an upper bound.
(c) A large acceleration is achieved by taking above turn while moving very fast. Thus, turning around while moving close to the speed of light c should achieve the highest acceleration. Show that $\alpha \rightarrow \infty$ corresponding to $z_{0} \rightarrow 0$ represents this scenario. What is the equation of motion of a particle moving with infinite proper acceleration. Qualitatively, to gain insight, plot world-lines of particles moving with $\alpha=c^{2} / z_{0}$, $\alpha=10 c^{2} / z_{0}$, and $\alpha=100 c^{2} / z_{0}$.

