Midterm Exam No. 02 (2022 Spring)

PHYS 520B: ELECTROMAGNETIC THEORY

Department of Physics, Southern Illinois University–Carbondale Date: 2022 Mar 29

- 1. (20 points.) Prove the following. If u^{α} is a time-like vector and $u^{\alpha}a_{\alpha} = 0$, then a^{α} is necessarily space-like.
- 2. (20 points.) Lorentz transformation relates the energy E and momentum \mathbf{p} of a particle when measured in different frames. For example, for the special case when the relative velocity and the velocity of the particle are parallel we have

$$\begin{pmatrix} E'/c \\ p' \end{pmatrix} = \begin{pmatrix} \gamma & \beta\gamma \\ \beta\gamma & \gamma \end{pmatrix} \begin{pmatrix} E/c \\ p \end{pmatrix}.$$
 (1)

Photons are massless spin 1 particles whose energy and momentum are $E = \hbar \omega$ and $\mathbf{p} = \hbar \mathbf{k}$, such that $\omega = kc$. Thus, derive the relativistic Doppler effect formula

$$\omega' = \omega \sqrt{\frac{1+\beta}{1-\beta}}.$$
(2)

3. (20 points.) If the motion of a non-relativistic particle is such that it does not change the kinetic energy of the particle, we have

$$\frac{d}{dt}\left(\frac{1}{2}mv^2\right) = 0. \tag{3}$$

Show that this imples

$$\mathbf{v} \cdot \mathbf{a} = 0. \tag{4}$$

This is achieved when the acceleration a = 0 or in the case of uniform circular motion. Starting from Eq. (4) show that the relativistic generalization of kinetic energy $E = mc^2\gamma$ is also conserved, that is,

$$\frac{d}{dt}(mc^2\gamma) = 0. \tag{5}$$

Observe that

$$\boldsymbol{\beta} \cdot \mathbf{a} = \frac{d}{dt} \left(\frac{\beta^2}{2} \right) = -\frac{1}{2} \frac{d}{dt} \frac{1}{\gamma^2} = \frac{1}{\gamma^3} \frac{d\gamma}{dt}.$$
 (6)

4. (20 points.) The path of a relativistic particle moving along a straight line with constant (proper) acceleration α is described by equation of a hyperbola

$$z^2 - c^2 t^2 = z_0^2, \qquad z_0 = \frac{c^2}{\alpha}.$$
 (7)

Figure 1: Problem 4

(a) This represents the world-line of a particle thrown from $z > z_0$ at t < 0 towards $z = z_0$ in region of constant (proper) acceleration α as described by the bold (blue) curve in the space-time diagram in Figure 4. In contrast a Newtonian particle moving with constant acceleration α is described by equation of a parabola

$$z - z_0 = \frac{1}{2}\alpha t^2 \tag{8}$$

as described by the dashed (red) curve in the space-time diagram in Figure 4. Show that the hyperbolic curve

$$z = z_0 \sqrt{1 + \frac{c^2 t^2}{z_0^2}} \tag{9}$$

in regions that satisfy

$$t \ll \frac{c}{\alpha} \tag{10}$$

is approximately the parabolic curve

$$z = z_0 + \frac{1}{2}\alpha t^2 + \dots$$
 (11)

- (b) Recognize that the proper acceleration α does not have an upper bound.
- (c) A large acceleration is achieved by taking above turn while moving very fast. Thus, turning around while moving close to the speed of light c should achieve the highest acceleration. Show that $\alpha \to \infty$ corresponding to $z_0 \to 0$ represents this scenario. What is the equation of motion of a particle moving with infinite proper acceleration. Qualitatively, to gain insight, plot world-lines of particles moving with $\alpha = c^2/z_0$, $\alpha = 10c^2/z_0$, and $\alpha = 100c^2/z_0$.