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1. (20 points.) Evalauate the integral
∫ ∞

−∞

dx eix δ(x2 − a2) (1)

for a > 0. Hint: Use the identity

δ(F (x)) =
∑

r

δ(x− ar)
∣

∣

∣

dF
dx

∣

∣

x=ar

∣

∣

∣

, (2)

where the sum on r runs over the roots ar of the equation F (x) = 0.

2. (20 points.) Evaluate the dimension of

1

4π

√

µ0

ε0
. (3)

3. (20 points.) The free Green dyadic Γ0(r, r
′;ω) satisfies the dyadic differential equation

c2

ω2

[

∇∇− 1

(

∇2 +
ω2

c2

)

]

· Γ0(r, r
′;ω) = 1δ(3)(r− r′). (4)

(a) Show that the divergence of the free Green dyadic is

∇ · Γ0(r, r
′;ω) = −∇δ(3)(r− r′). (5)

(b) Substitute the divergence in the dyadic differential equation and derive

−

(

∇2 +
ω2

c2

)

Γ0(r, r
′;ω) =

(

∇∇+
ω2

c2
1

)

δ(3)(r− r′). (6)

(c) Construct the differential equation

−(∇2 + k2)G0(r, r
′;ω) = δ(3)(r− r′) (7)

for the Green function G0(r, r
′;ω), where

k =
ω

c
. (8)
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The free Green function has the (causal) solution

G0(r− r′;ω) =
ei

ω

c
|r−r′|

4π|r− r′|
. (9)

Show that the free Green dyadic can be expressed in terms of the free Green function
as

Γ0(r, r
′;ω) =

[

∇∇+ k21
]

G0(r, r
′;ω) (10)

(d) The free Green dyadic is a function of r − r′. Thus, we can choose r′ to be the
origin without any loss of generality. Substituting r → r− r′ at any moment of the
calculation returns the dependence in r′. Evaluate the gradient operators and show
that, for r′ = 0,

Γ0(r;ω) =
eikr

4πr3

[

− u(ikr)1+ v(ikr)r̂r̂
]

, (11)

where

u(x) = 1− x+ x2, (12a)

v(x) = 3− 3x+ x2. (12b)

4. (20 points.) The free Green dyadic Γ0 can be expressed in terms of the free Green
function G0 as

Γ0(r, r
′;ω) =

[

∇∇+ k21
]

G0(r, r
′;ω), (13)

where

G0(r− r′;ω) =
eik|r−r′|

4π|r− r′|
. (14)

In the far-field approximation,
r′ ≪ r, (15)

when the observation point r is very far relative to the source point r′, show that

|r− r′| =
√

r2 + r′2 − 2rr′ ∼ r − r̂ · r′. (16)

Thus, in the far-field asymptotic limit show that

eik|r−r′|

4π|r− r′|
→

eikr

4πr
e−ik′·r′, (17)

where we introduced the notation
k′ = k r̂. (18)

Further, the far-field approximation allows the replacement

∇ → ik′. (19)
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Thus, in the far-field approximation show that

(∇∇+ k21) → (1− r̂r̂)k2 = −r̂ × (r̂× 1)k2, (20)

which projects vectors in the plane normal to the radial direction. Thus, show that the
free Green dyadic in the far-field approximation takes the form

Γ0(r, r
′;ω) = −r̂× (r̂× 1)

k2

4π

eikr

r
e−ik′·r′. (21)

5. (20 points.) The scattering amplitude is given by

f(θ, φ, ω) = −
k2

4π
χ(k′ − k, ω), (22)

where χ(q, ω) is the Fourier transform of χ(r, ω),

χ(q, ω) =

∫

d3r eiq·r.χ(r, ω) (23)

If the obstacles are confined on a plane, say z = 0, then it is convenient to define polar-
izability per unit area λ = α/Area,

χ(r, ω) = 4πλ(s) δ(z), (24)

where the δ-function has been used to describe the assumption that the obstacles in a
thin film are confined to a plane, z = 0 here. Once the obstacles are restricted to be
on a plane, we can choose the direction of incidence k of the plane wave to be normal
to the plane. That is, k · s = 0, where s are the positions of the point obstacles on the
plane. Further, notice that in this special case the electric field E0 is independent of the
position s. Using these considerations show that the scattering amplitude, for isotropic
polarizabilities, is given by

f(θ, φ, ω) = −k2

∫

d2s eikr̂·sλ(s). (25)

For a disc of radius R centered at position s0 with uniform polarizability per unit area λ
complete the integrals to obtain

f(θ, φ, ω) = −λk2πR22
J1(kR sin θ)

kR sin θ
eikr̂·s0. (26)

Hint: Use the integral representation of zeroth order Bessel function of the first kind

J0(t) =

∫ 2π

0

dφ

2π
eit cosφ (27)

and the identity
∫ b

0

tdtJ0(t) = bJ1(b). (28)
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Note the limiting value

lim
x→0

J1(x)

x
=

1

2
, (29)

which guarantees a well defined value for the scattering amplitude at θ = 0. We observe
the interesting feature that the scattering amplitude at θ = 0 is entirely given by the area
of the disc.
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