Final Exam (2022 Spring)
 PHYS 520B: ELECTROMAGNETIC THEORY
 Department of Physics, Southern Illinois University-Carbondale

Date: 2022 Mar 5

1. (20 points.) Evalauate the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x e^{i x} \delta\left(x^{2}-a^{2}\right) \tag{1}
\end{equation*}
$$

for $a>0$. Hint: Use the identity

$$
\begin{equation*}
\delta(F(x))=\sum_{r} \frac{\delta\left(x-a_{r}\right)}{\left.\left|\frac{d F}{d x}\right|_{x=a_{r}} \right\rvert\,} \tag{2}
\end{equation*}
$$

where the sum on r runs over the roots a_{r} of the equation $F(x)=0$.
2. ($\mathbf{2 0}$ points.) Evaluate the dimension of

$$
\begin{equation*}
\frac{1}{4 \pi} \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} . \tag{3}
\end{equation*}
$$

3. (20 points.) The free Green dyadic $\boldsymbol{\Gamma}_{0}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)$ satisfies the dyadic differential equation

$$
\begin{equation*}
\frac{c^{2}}{\omega^{2}}\left[\boldsymbol{\nabla} \nabla-\mathbf{1}\left(\nabla^{2}+\frac{\omega^{2}}{c^{2}}\right)\right] \cdot \boldsymbol{\Gamma}_{0}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)=\mathbf{1} \delta^{(3)}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \tag{4}
\end{equation*}
$$

(a) Show that the divergence of the free Green dyadic is

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \boldsymbol{\Gamma}_{0}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)=-\boldsymbol{\nabla} \delta^{(3)}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \tag{5}
\end{equation*}
$$

(b) Substitute the divergence in the dyadic differential equation and derive

$$
\begin{equation*}
-\left(\nabla^{2}+\frac{\omega^{2}}{c^{2}}\right) \boldsymbol{\Gamma}_{0}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)=\left(\nabla \nabla+\frac{\omega^{2}}{c^{2}} \mathbf{1}\right) \delta^{(3)}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \tag{6}
\end{equation*}
$$

(c) Construct the differential equation

$$
\begin{equation*}
-\left(\nabla^{2}+k^{2}\right) G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)=\delta^{(3)}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \tag{7}
\end{equation*}
$$

for the Green function $G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)$, where

$$
\begin{equation*}
k=\frac{\omega}{c} . \tag{8}
\end{equation*}
$$

The free Green function has the (causal) solution

$$
\begin{equation*}
G_{0}\left(\mathbf{r}-\mathbf{r}^{\prime} ; \omega\right)=\frac{e^{i \frac{\omega}{c}\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}}{4 \pi\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \tag{9}
\end{equation*}
$$

Show that the free Green dyadic can be expressed in terms of the free Green function as

$$
\begin{equation*}
\boldsymbol{\Gamma}_{0}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)=\left[\boldsymbol{\nabla} \boldsymbol{\nabla}+k^{2} \mathbf{1}\right] G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right) \tag{10}
\end{equation*}
$$

(d) The free Green dyadic is a function of $\mathbf{r}-\mathbf{r}^{\prime}$. Thus, we can choose \mathbf{r}^{\prime} to be the origin without any loss of generality. Substituting $\mathbf{r} \rightarrow \mathbf{r}-\mathbf{r}^{\prime}$ at any moment of the calculation returns the dependence in \mathbf{r}^{\prime}. Evaluate the gradient operators and show that, for $\mathbf{r}^{\prime}=0$,

$$
\begin{equation*}
\boldsymbol{\Gamma}_{0}(\mathbf{r} ; \omega)=\frac{e^{i k r}}{4 \pi r^{3}}[-u(i k r) \mathbf{1}+v(i k r) \hat{\mathbf{r}} \hat{\mathbf{r}}] \tag{11}
\end{equation*}
$$

where

$$
\begin{align*}
& u(x)=1-x+x^{2} \tag{12a}\\
& v(x)=3-3 x+x^{2} \tag{12b}
\end{align*}
$$

4. (20 points.) The free Green dyadic Γ_{0} can be expressed in terms of the free Green function G_{0} as

$$
\begin{equation*}
\boldsymbol{\Gamma}_{0}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)=\left[\boldsymbol{\nabla} \boldsymbol{\nabla}+k^{2} \mathbf{1}\right] G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right) \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{0}\left(\mathbf{r}-\mathbf{r}^{\prime} ; \omega\right)=\frac{e^{i k\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}}{4 \pi\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \tag{14}
\end{equation*}
$$

In the far-field approximation,

$$
\begin{equation*}
r^{\prime} \ll r \tag{15}
\end{equation*}
$$

when the observation point \mathbf{r} is very far relative to the source point \mathbf{r}^{\prime}, show that

$$
\begin{equation*}
\left|\mathbf{r}-\mathbf{r}^{\prime}\right|=\sqrt{r^{2}+r^{\prime 2}-2 r r^{\prime}} \sim r-\hat{\mathbf{r}} \cdot \mathbf{r}^{\prime} \tag{16}
\end{equation*}
$$

Thus, in the far-field asymptotic limit show that

$$
\begin{equation*}
\frac{e^{i k\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}}{4 \pi\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \rightarrow \frac{e^{i k r}}{4 \pi r} e^{-i \mathbf{k}^{\prime} \cdot \mathbf{r}^{\prime}} \tag{17}
\end{equation*}
$$

where we introduced the notation

$$
\begin{equation*}
\mathbf{k}^{\prime}=k \hat{\mathbf{r}} . \tag{18}
\end{equation*}
$$

Further, the far-field approximation allows the replacement

$$
\begin{equation*}
\nabla \rightarrow i \mathbf{k}^{\prime} \tag{19}
\end{equation*}
$$

Thus, in the far-field approximation show that

$$
\begin{equation*}
\left(\boldsymbol{\nabla} \boldsymbol{\nabla}+k^{2} \mathbf{1}\right) \rightarrow(\mathbf{1}-\hat{\mathbf{r}} \hat{\mathbf{r}}) k^{2}=-\hat{\mathbf{r}} \times(\hat{\mathbf{r}} \times \mathbf{1}) k^{2} \tag{20}
\end{equation*}
$$

which projects vectors in the plane normal to the radial direction. Thus, show that the free Green dyadic in the far-field approximation takes the form

$$
\begin{equation*}
\boldsymbol{\Gamma}_{0}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)=-\hat{\mathbf{r}} \times(\hat{\mathbf{r}} \times \mathbf{1}) \frac{k^{2}}{4 \pi} \frac{e^{i k r}}{r} e^{-i \mathbf{k}^{\prime} \cdot \mathbf{r}^{\prime}} \tag{21}
\end{equation*}
$$

5. (20 points.) The scattering amplitude is given by

$$
\begin{equation*}
f(\theta, \phi, \omega)=-\frac{k^{2}}{4 \pi} \chi\left(\mathbf{k}^{\prime}-\mathbf{k}, \omega\right) \tag{22}
\end{equation*}
$$

where $\chi(\mathbf{q}, \omega)$ is the Fourier transform of $\chi(\mathbf{r}, \omega)$,

$$
\begin{equation*}
\chi(\mathbf{q}, \omega)=\int d^{3} r e^{i \mathbf{q} \cdot \mathbf{r}} \cdot \chi(\mathbf{r}, \omega) \tag{23}
\end{equation*}
$$

If the obstacles are confined on a plane, say $z=0$, then it is convenient to define polarizability per unit area $\boldsymbol{\lambda}=\boldsymbol{\alpha} /$ Area,

$$
\begin{equation*}
\boldsymbol{\chi}(\mathbf{r}, \omega)=4 \pi \boldsymbol{\lambda}(\mathbf{s}) \delta(z) \tag{24}
\end{equation*}
$$

where the δ-function has been used to describe the assumption that the obstacles in a thin film are confined to a plane, $z=0$ here. Once the obstacles are restricted to be on a plane, we can choose the direction of incidence \mathbf{k} of the plane wave to be normal to the plane. That is, $\mathbf{k} \cdot \mathbf{s}=0$, where \mathbf{s} are the positions of the point obstacles on the plane. Further, notice that in this special case the electric field \mathbf{E}_{0} is independent of the position s. Using these considerations show that the scattering amplitude, for isotropic polarizabilities, is given by

$$
\begin{equation*}
f(\theta, \phi, \omega)=-k^{2} \int d^{2} s e^{i k \hat{\mathbf{r}} \cdot \mathbf{s}} \lambda(\mathbf{s}) \tag{25}
\end{equation*}
$$

For a disc of radius R centered at position \mathbf{s}_{0} with uniform polarizability per unit area λ complete the integrals to obtain

$$
\begin{equation*}
f(\theta, \phi, \omega)=-\lambda k^{2} \pi R^{2} 2 \frac{J_{1}(k R \sin \theta)}{k R \sin \theta} e^{i k \hat{\mathbf{r} \cdot \mathbf{s}_{0}} .} \tag{26}
\end{equation*}
$$

Hint: Use the integral representation of zeroth order Bessel function of the first kind

$$
\begin{equation*}
J_{0}(t)=\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} e^{i t \cos \phi} \tag{27}
\end{equation*}
$$

and the identity

$$
\begin{equation*}
\int_{0}^{b} t d t J_{0}(t)=b J_{1}(b) \tag{28}
\end{equation*}
$$

Note the limiting value

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{J_{1}(x)}{x}=\frac{1}{2}, \tag{29}
\end{equation*}
$$

which guarantees a well defined value for the scattering amplitude at $\theta=0$. We observe the interesting feature that the scattering amplitude at $\theta=0$ is entirely given by the area of the disc.

