Homework No. 09 (2022 Spring)
 PHYS 510: CLASSICAL MECHANICS
 Department of Physics, Southern Illinois University-Carbondale
 Due date: Tuesday, 2022 Apr 12, 4.30pm

1. (20 points.) (Based on Schwinger, chapter 9) The Hamiltonian for a Kepler problem is

$$
\begin{equation*}
H=\frac{p_{1}^{2}}{2 m_{1}}+\frac{p_{2}^{2}}{2 m_{2}}-\frac{\alpha}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}, \tag{1}
\end{equation*}
$$

where \mathbf{r}_{1} and \mathbf{r}_{2} are the positions of the two constituent particles of masses m_{1} and m_{2}.
(a) Introduce the coordinates representing the center of mass, relative position, total momentum, and relative momentum:

$$
\begin{equation*}
\mathbf{R}=\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{m_{1}+m_{2}}, \quad \mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}, \quad \mathbf{P}=\mathbf{p}_{1}+\mathbf{p}_{2}, \quad \mathbf{p}=\frac{m_{2} \mathbf{p}_{1}-m_{1} \mathbf{p}_{2}}{m_{1}+m_{2}} \tag{2}
\end{equation*}
$$

respectively, to rewrite the Hamiltonian as

$$
\begin{equation*}
H=\frac{P^{2}}{2 M}+\frac{p^{2}}{2 \mu}-\frac{\alpha}{r}, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
M=m_{1}+m_{2}, \quad \frac{1}{\mu}=\frac{1}{m_{1}}+\frac{1}{m_{2}} . \tag{4}
\end{equation*}
$$

(b) Show that Hamilton's equations of motion are given by

$$
\begin{equation*}
\frac{d \mathbf{R}}{d t}=\frac{\mathbf{P}}{M}, \quad \frac{d \mathbf{P}}{d t}=0, \quad \frac{d \mathbf{r}}{d t}=\frac{\mathbf{p}}{\mu}, \quad \frac{d \mathbf{p}}{d t}=-\frac{\alpha \mathbf{r}}{r^{3}} . \tag{5}
\end{equation*}
$$

(c) Verify that the Hamiltonian H, the angular momentum $\mathbf{L}=\mathbf{r} \times \mathbf{p}$, and the Laplace-Runge-Lenz vector

$$
\begin{equation*}
\mathbf{A}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times \mathbf{L}}{\mu \alpha} \tag{6}
\end{equation*}
$$

are the three constants of motion for the Kepler problem. That is, show that

$$
\begin{equation*}
\frac{d H}{d t}=0, \quad \frac{d \mathbf{L}}{d t}=0, \quad \frac{d \mathbf{A}}{d t}=0 \tag{7}
\end{equation*}
$$

