Homework No. 06 (2022 Spring)
PHYS 510: CLASSICAL MECHANICS
Department of Physics, Southern Illinois University-Carbondale
Due date: Tuesday, 2022 Mar 15, 4.30pm

1. ($\mathbf{2 0}$ points.) The topic of Lagrange multiplier will not be covered in class during this semester. Write a brief summary on Lagrange multiplier. My recording on the topic available at
https://youtu.be/dTU9p9VyeqE (45 minute video)
is a resource. The following problem is based on Lagrange multiplier.
2. (20 points.) Spherical pendulum: Consider a pendulum that is suspended such that a mass m is able to move freely on the surface of a sphere of radius a (the length of the pendulum). The mass is then subject to the condition of constraint

$$
\begin{equation*}
F=\frac{1}{2}\left(x^{2}+y^{2}+z^{2}-a^{2}\right)=0 \tag{1}
\end{equation*}
$$

where the factor of $1 / 2$ is introduced anticipating cancellations. Consider the Lagrangian function

$$
\begin{equation*}
L(\mathbf{r}, \dot{\mathbf{r}})=\frac{1}{2} m \dot{\mathbf{r}}^{2}-m g z-\lambda F . \tag{2}
\end{equation*}
$$

(a) Evaluate the gradient $\boldsymbol{\nabla}$ of the condition of constraint. Show that

$$
\begin{equation*}
\boldsymbol{\nabla} F=\mathbf{r} . \tag{3}
\end{equation*}
$$

(b) Using the Euler-Lagrange equations derive the equations of motion

$$
\begin{equation*}
m \ddot{\mathbf{r}}=-m g \hat{\mathbf{z}}-\lambda \mathbf{r} . \tag{4}
\end{equation*}
$$

(c) Derive an expression for λ. In particular, show that it can be expressed in the form

$$
\begin{equation*}
-\lambda a=\hat{\mathbf{r}} \cdot \mathbf{N} \tag{5}
\end{equation*}
$$

Find \mathbf{N}. Give the physical interpretation of \mathbf{N} using D'Alembert's principle.
(d) Show that the angular momentum $\mathbf{L}=\mathbf{r} \times \mathbf{p}$, where $\mathbf{p}=m \dot{\mathbf{r}}$ is the momentum of the particle, about the z-axis is conserved. That is,

$$
\begin{equation*}
\frac{d}{d t}(\hat{\mathbf{z}} \cdot \mathbf{L})=0 . \tag{6}
\end{equation*}
$$

Show that this also implies the conservation of the areal velocity

$$
\begin{equation*}
\frac{d S}{d t}=\frac{1}{2}(x \dot{y}-y \dot{x}) \tag{7}
\end{equation*}
$$

where S is the area swept out.
(e) Show that

$$
\begin{equation*}
\frac{d F}{d t}=\mathbf{r} \cdot \dot{\mathbf{r}}=0 \tag{8}
\end{equation*}
$$

Using this derive the statement of conservation of energy,

$$
\begin{equation*}
\frac{d H}{d t}=0, \quad H=\frac{1}{2} m \dot{\mathbf{r}}^{2}+m g z \tag{9}
\end{equation*}
$$

starting from the equation of motion in Eq. (4) and multiplying by $\dot{\mathbf{r}}$.

