Homework No. 05 (2022 Spring)
PHYS 510: CLASSICAL MECHANICS
Department of Physics, Southern Illinois University-Carbondale
Due date: Tuesday, 2022 Mar 15, 4.30pm

1. (20 points.) A system, characterized by the parameters ω, α, and β, and the dynamical parameter θ, is described by the equation of motion

$$
\begin{equation*}
\ddot{\theta}+\omega^{2} \sin \theta+\alpha \ddot{\theta} \cos \theta+\beta \dot{\theta}^{2} \sin \theta=0 . \tag{1}
\end{equation*}
$$

Write the above equation of motion in the small angle approximation, to the leading order in θ.
2. (20 points.) Consider the coplanar double pendulum in Figure 2.

Figure 1: Problem 2.
(a) Write the Lagrangian for the system. in particular, show that the Lagrangian can be expressed in the form

$$
\begin{equation*}
L=L_{1}+L_{2}+L_{\mathrm{int}} \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
L_{1} & =\frac{1}{2}\left(m_{1}+m_{2}\right) a_{1}^{2} \dot{\theta}_{1}^{2}+\left(m_{1}+m_{2}\right) g a_{1} \cos \theta_{1} \tag{3a}\\
L_{2} & =\frac{1}{2} m_{2} a_{2}^{2} \dot{\theta}_{2}^{2}+m_{2} g a_{2} \cos \theta_{2} \tag{3b}\\
L_{\text {int }} & =m_{2} a_{1} a_{2} \dot{\theta}_{1} \dot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right) \tag{3c}
\end{align*}
$$

(b) Determine the equations of motion for the system. Express them in the form

$$
\begin{align*}
\left(m_{1}+m_{2}\right) a_{1} \ddot{\theta}_{1}+\left(m_{1}+m_{2}\right) g \sin \theta_{1}+m_{2} a_{2} \ddot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right)+m_{2} a_{2} \dot{\theta}_{2}^{2} \sin \left(\theta_{1}-\theta_{2}\right) & =0, \tag{4a}\\
a_{2} \ddot{\theta}_{2}+g \sin \theta_{2}+a_{1} \ddot{\theta}_{1} \cos \left(\theta_{1}-\theta_{2}\right)-a_{1} \dot{\theta}_{1}^{2} \sin \left(\theta_{1}-\theta_{2}\right) & =0 . \tag{4b}
\end{align*}
$$

(c) In the small angle approximation show that the equations of motion reduce to

$$
\begin{align*}
& \ddot{\theta}_{1}+\omega_{1}^{2} \theta_{1}+\frac{\alpha}{\beta} \ddot{\theta}_{2}=0 \tag{5a}\\
& \ddot{\theta}_{2}+\omega_{2}^{2} \theta_{2}+\beta \ddot{\theta}_{1}=0 \tag{5b}
\end{align*}
$$

where

$$
\begin{equation*}
\omega_{1}^{2}=\frac{g}{a_{1}}, \quad \omega_{2}^{2}=\frac{g}{a_{2}}, \quad \alpha=\frac{m_{2}}{m_{1}+m_{2}}, \quad \beta=\frac{a_{1}}{a_{2}}=\frac{\omega_{2}^{2}}{\omega_{1}^{2}} . \tag{6}
\end{equation*}
$$

Note that $0 \leq \alpha \leq 1$.
(d) Determine the solution for the initial conditions

$$
\begin{equation*}
\theta_{1}(0)=0, \quad \theta_{2}(0)=0, \quad \dot{\theta}_{1}(0)=0, \quad \dot{\theta}_{2}(0)=\omega_{0} \tag{7}
\end{equation*}
$$

for $\alpha=1 / 2$ and $\beta=1$.

