
Homework No. 05 (2022 Spring)
PHYS 510: CLASSICAL MECHANICS

Department of Physics, Southern Illinois University–Carbondale

Due date: Tuesday, 2022 Mar 15, 4.30pm

1. (20 points.) A system, characterized by the parameters ω, α, and β, and the dynamical
parameter θ, is described by the equation of motion

θ̈ + ω2 sin θ + αθ̈ cos θ + βθ̇2 sin θ = 0. (1)

Write the above equation of motion in the small angle approximation, to the leading order
in θ.

2. (20 points.) Consider the coplanar double pendulum in Figure 2.
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Figure 1: Problem 2.

(a) Write the Lagrangian for the system. in particular, show that the Lagrangian can
be expressed in the form

L = L1 + L2 + Lint, (2)

where
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+ (m1 +m2)ga1 cos θ1, (3a)
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θ̇2
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+m2ga2 cos θ2, (3b)

Lint = m2a1a2θ̇1θ̇2 cos(θ1 − θ2). (3c)

(b) Determine the equations of motion for the system. Express them in the form

(m1 +m2)a1θ̈1 + (m1 +m2)g sin θ1 +m2a2θ̈2 cos(θ1 − θ2) +m2a2θ̇
2

2
sin(θ1 − θ2) = 0, (4a)

a2θ̈2 + g sin θ2 + a1θ̈1 cos(θ1 − θ2)− a1θ̇
2

1
sin(θ1 − θ2) = 0. (4b)
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(c) In the small angle approximation show that the equations of motion reduce to

θ̈1 + ω2

1
θ1 +

α

β
θ̈2 = 0, (5a)

θ̈2 + ω2

2
θ2 + βθ̈1 = 0, (5b)
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=
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2
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1

. (6)

Note that 0 ≤ α ≤ 1.

(d) Determine the solution for the initial conditions

θ1(0) = 0, θ2(0) = 0, θ̇1(0) = 0, θ̇2(0) = ω0, (7)

for α = 1/2 and β = 1.
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