Midterm Exam No. 02 (2022 Spring)
 PHYS 510: CLASSICAL MECHANICS
 Department of Physics, Southern Illinois University-Carbondale

Date: 2022 Mar 31

1. (20 points.) A system, characterized by the parameters ω, α, and β, and the dynamical parameter θ, is described by the equation of motion

$$
\begin{equation*}
\ddot{\theta}+\omega^{2} \sin \theta+\alpha \ddot{\theta} \sin \theta+\beta \dot{\theta} \sin \theta \cos \theta=0 . \tag{1}
\end{equation*}
$$

Write the above equation of motion in the small angle approximation, to the leading order in θ.
2. (20 points.) Given a Lagrangian L, the Hamiltonian H is given by

$$
\begin{equation*}
H=\mathbf{p} \cdot \frac{d \mathbf{r}}{d t}-L \tag{2}
\end{equation*}
$$

where \mathbf{p} is the canonical momentum. Evaluate

$$
\begin{equation*}
\frac{\partial H}{\partial \mathbf{v}} \tag{3}
\end{equation*}
$$

where \mathbf{v} stands for $d \mathbf{r} / d t$.
3. ($\mathbf{3 0}$ points.) (Refer Goldstein, Sec. 9.5.) Hamiltonian for the motion of a ball (along the radial direction) near the surface of Earth is given by

$$
\begin{equation*}
H\left(z, p_{z}\right)=\frac{p_{z}^{2}}{2 m}-m g z \tag{4}
\end{equation*}
$$

(a) Determine the equations of motions using

$$
\begin{equation*}
\frac{d z}{d t}=\frac{\partial H}{\partial p_{z}} \quad \text { and } \quad \frac{d p_{z}}{d t}=-\frac{\partial H}{\partial z} . \tag{5}
\end{equation*}
$$

Then, solve the coupled differential equations to find the familiar elementary solution

$$
\begin{equation*}
z=z_{0}+\frac{p_{0}}{m} t+\frac{1}{2} g t^{2} . \tag{6}
\end{equation*}
$$

(b) Next, determine the equations of motion using

$$
\begin{equation*}
[z, H]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}=\frac{\partial H}{\partial p_{z}} \quad \text { and } \quad\left[p_{z}, H\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}=-\frac{\partial H}{\partial z} \tag{7}
\end{equation*}
$$

Then, using

$$
\begin{equation*}
z=z_{0}+t[z, H]_{\mathbf{x}, \mathbf{p}, 0}^{\text {P.B. }}+\frac{1}{2} t^{2}\left[[z, H]_{\mathbf{x}, \mathbf{p}, 0}^{\text {P.B. }}, H\right]_{\mathbf{x}, \mathbf{p}, 0}^{\text {P.B. }}+\cdots \tag{8}
\end{equation*}
$$

rederive the elementary solution. Here 0 in the subscripts refers to the initial conditions at $t=0$.
4. (30 points.) Hamiltonian for a charge particle of mass m and charge q in a magnetic field \mathbf{B} is given by

$$
\begin{equation*}
H(\mathbf{x}, \mathbf{p})=\frac{1}{2 m}(\mathbf{p}-q \mathbf{A})^{2} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A} . \tag{10}
\end{equation*}
$$

Let

$$
\begin{equation*}
\frac{\partial \mathbf{A}}{\partial t}=0 \tag{11}
\end{equation*}
$$

(a) Show that the Hamilton equations of motion leads to the equations, using ($\mathbf{v}=$ $d \mathbf{x} / d t)$

$$
\begin{align*}
m \mathbf{v} & =\mathbf{p}-q \mathbf{A} \tag{12a}\\
\frac{d \mathbf{p}}{d t} & =q(\boldsymbol{\nabla} \mathbf{A}) \cdot \mathbf{v} \tag{12b}
\end{align*}
$$

Show that the above equations in conjunction imply the familiar equation

$$
\begin{equation*}
m \frac{d \mathbf{v}}{d t}=q \mathbf{v} \times \mathbf{B} \tag{13}
\end{equation*}
$$

(b) Evaluate the Poisson braket

$$
\begin{equation*}
[\mathbf{x}, \mathbf{x}]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}=0 . \tag{14}
\end{equation*}
$$

(c) Evaluate the Poisson braket

$$
\begin{equation*}
\left[\mathbf{x}^{i}, \mathbf{v}^{j}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}=\frac{1}{m} \mathbf{1}^{i j} . \tag{15}
\end{equation*}
$$

(d) Evaluate the Poisson braket

$$
\begin{equation*}
\left[\mathbf{x}^{i}, \mathbf{p}^{j}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}=\mathbf{1}^{i j} \tag{16}
\end{equation*}
$$

(e) Evaluate the Poisson braket

$$
\begin{equation*}
\left[m \mathbf{v}^{i}, m \mathbf{v}^{j}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}=q\left(\boldsymbol{\nabla}^{i} \mathbf{A}^{j}-\boldsymbol{\nabla}^{j} \mathbf{A}^{i}\right) \tag{17}
\end{equation*}
$$

Verify that

$$
\begin{equation*}
\left(\boldsymbol{\nabla}^{i} \mathbf{A}^{j}-\boldsymbol{\nabla}^{j} \mathbf{A}^{i}\right)=\varepsilon^{i j k} \mathbf{B}^{k}=-\mathbf{1} \times \mathbf{B} \tag{18}
\end{equation*}
$$

Poisson bracket in classical mechanics has direct correspondence to commutation relation in quantum mechanics through the factor $i \hbar$, which conforms with experiments and balances the dimensions. Then, we can write

$$
\begin{equation*}
[m \mathbf{v}, m \mathbf{v}]=i \hbar q \mathbf{B} \tag{19}
\end{equation*}
$$

or

$$
\begin{equation*}
m \mathbf{v} \times m \mathbf{v}=i \hbar q \mathbf{B} \tag{20}
\end{equation*}
$$

using the fact that the commutator and the vector product satisfies the same Lie algebra as that of Poisson bracket.
(f) Evaluate the Poisson braket

$$
\begin{equation*}
[\mathbf{p}, \mathbf{p}]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}=0 . \tag{21}
\end{equation*}
$$

