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1. (20 points.) Given the Hamiltonian

H(x, p) =
p2

2m
+

1

2
kx2, (1)

where m and k are constants and x and p are the dynamical variables. Write the Hamil-
ton’s equations of motion for this system.

2. (20 points.) Given the Lorentz transformation
(

z′

ct′

)

=

(

γ βγ
βγ γ

)(

z
ct

)

. (2a)

Find the inverse transformation.

3. (20 points.) The relativity principle states that the laws of physics are invariant (or
covariant) when observed using different coordinate systems. In special relativity we
restrict these coordinate systems to be uniformly moving with respect to each other.

(a) Linear: Spatial homogeneity, spatial isotropy, and temporal homogeneity, require the
transformation to be linear. (We will skip this derivation. No submission needed.)
Then, for simplicity, restricting to coordinate systems moving with respect to each
other in a single direction, we can write

z′ = A(v) z +B(v) t, (3a)

t′ = E(v) z + F (v) t. (3b)

We will refer to the respective frames as primed and unprimed.

(b) Identity: An object at rest in the primed frame, described by z′ = 0, will be described
in the unprimed frame as z = vt. Using these in Eq. (3a), we have

0 = A(v) vt+B(v) t. (4)

This implies B(v) = −vA(v). Thus, show that

z′ = A(v) (z − vt), (5a)

t′ = E(v) z + F (v) t. (5b)
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(c) Reversal: The descriptions of a process in the unprimed frame moving to the right
with velocity v with respect to the primed should be identical to those made in
the unprimed (with their axis flipped) moving with velocity −v with respect to the
primed (with their axis flipped). This is equivalent to the requirement of isotropy in
an one dimensional space. That is, the transformation must be invariant under

z → −z, z′ → −z′, v → −v. (6)

This imples

−z′ = A(−v) (−z + vt), (7a)

t′ = −E(−v) z + F (−v) t. (7b)

Show that Eqs. (5a) and (7a) in conjunction imply

A(−v) = A(v). (8)

Further, show that Eqs. (5b) and (7b) in conjunction implies

E(−v) = −E(v), (9a)

F (−v) = F (v). (9b)

(d) Reciprocity: The description of a process in the unprimed frame moving to the right
with velocity v is identical to the description in the primed frame moving to the left.
That is, the transformation must be invariant under

(z, t) → (z′, t′) (z′, t′) → (z, t) v → −v. (10)

Show that this implies

z = A(−v) (z′ + vt′), (11a)

t = E(−v) z′ + F (−v) t′. (11b)

Show that Eqs. (5) and Eqs. (11) imply

E(v) =
1

v

[

1

A(v)
−A(v)

]

, (12a)

F (v) = A(v). (12b)

Together, for arbitrary A(v), the relativity principle allows the following transformations,

z′ = A(v) (z − vt), (13a)

t′ = A(v)

[

1

v

(

1

A(v)2
− 1

)

z + t

]

. (13b)
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In Galilean relativity we require t′ = t. Show that this is obtained with

A(v) = 1 (14)

in Eqs. (13). This leads to the Galilean transformation

z′ = z − vt, (15a)

t′ = t. (15b)

In Einstein’s special relativity the requirement is for a special speed c that is described
identically by both the primed and unprimed frames. That is,

z = ct, (16a)

z′ = ct′. (16b)

Show that Eqs. (16) when substituted in in Eqs. (13) leads to

A(v) =
1

√

1−
v2

c2

. (17)

This corresponds to the Lorentz transformation

z′ = A(v)(z − vt), (18a)

t′ = A(v)
(

−
v

c2
z + t

)

. (18b)

This suggests that it should be possible to contrive additional solutions for A(v) that
respects the relativity principle, but with new physical requirements for the respective
choice of A(v). Construct one such transformation, which will not be used in grading.

4. (20 points.) A relativisitic particle in a uniform electric field is described by the equations

dE

dt
= F · v, (19a)

dp

dt
= F, (19b)

where

E = mc2γ, (20a)

p = mvγ, (20b)

and
F = qE. (21)
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Let us consider the configuration with the electric field in the ŷ direction,

E = E ŷ, (22)

and initial conditions

v(0) = 0 x̂+ 0 ŷ + 0 ẑ, (23a)

x(0) = 0 x̂+ y0 ŷ + 0 ẑ. (23b)

(a) In terms of the definition

ω0 =
1

c

qE

m
, (24)

show that the equations of motion are given by

dγ

dt
= ω0 · β (25)

and
d

dt
(βγ) = ω0. (26)

(b) Since the particle starts from rest show that we have

βγ = ω0t. (27)

For our configuration this implies

βx = 0, (28a)

βyγ = ω0t, (28b)

βz = 0. (28c)

Further, deduce

βy =
ω0t

√

1 + ω2

0
t2
. (29)

Integrate again and use the initial condition to show that the motion is described by

y − y0 =
c

ω0

[

√

1 + ω2

0
t2 − 1

]

. (30)

Rewrite the solution in the form

(

y − y0 +
c

ω0

)2

− c2t2 =
c2

ω2

0

. (31)

This represents a hyperbola passing through y = y0 at t = 0. If we choose the initial
position y0 = c/ω0 we have

y2 − c2t2 = y2
0
. (32)
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(c) The (constant) proper acceleration associated with this motion is

α = ω0c. (33)

A Newtonian particle moving with constant acceleration α is described by equation
of a parabola

y − y0 =
1

2
αt2. (34)

Show that the hyperbolic curve

y = y0

√

1 +
c2t2

y2
0

(35)

in regions that satisfy
ω0t ≪ 1 (36)

is approximately the parabolic curve

y = y0 +
1

2
αt2 + . . . . (37)

5. (20 points.) A relativisitic particle in a uniform electric field is described by the equations

dE

dt
= F · v, (38a)

dp

dt
= F, (38b)

where

E = mc2γ, (39a)

p = mvγ, (39b)

and
F = qE. (40)

Let us consider the configuration with the electric field in the ŷ direction,

E = E ŷ, (41)

and initial conditions

v(0) = v0 x̂ + 0 ŷ + 0 ẑ, (42a)

x(0) = 0 x̂+ y0 ŷ + 0 ẑ. (42b)

We will use the associated definitions β0 = v(0)/c and γ0 = 1/
√

1− β2

0
.

5



(a) In terms of the definition

ω0 =
1

c

qE

m
, (43)

show that the equations of motion are given by

dγ

dt
= ω0 · β (44)

and
d

dt
(βγ) = ω0. (45)

(b) For our configuration show that

βγ = ω0t+ β0γ0x̂, (46)

such that

βxγ = β0γ0, (47a)

βyγ = ω0t, (47b)

βzγ = 0. (47c)

Using βzγ = 0, learn that
β2

z

1− β2
x
− β2

y
− β2

z

= 0 (48)

and in conjunction with βxγ = β0γ0 deduce that

βz = 0 (49)

and
β2

x

β2

0

+ β2

y
= 1. (50)

Thus, deduce
γ2 = ω2

0
t2 + γ2

0
(51)

and

β2

x
+ β2

y
= β2

0
+

β2

y

γ2

0

. (52)

Further, deduce

βy =
ω̄0t

√

1 + ω̄2

0
t2

(53)

and

βx =
β0

√

1 + ω̄2

0
t2
, (54)

where
ω̄0 =

ω0

γ0
. (55)
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Integrate again and use the initial condition to show that the motion is described by

y − y0 =
c

ω̄0

[

√

1 + ω̄2

0
t2 − 1

]

, (56a)

x− x0 =
v0
ω̄0

sinh−1 ω̄0t, (56b)

and z = 0.

(c) Show that for v0 = 0 we reproduce the solution for a particle starting from rest.
Next, for

ω̄0t ≪ 1 (57)

and
α = ω̄0c (58)

obtain the non-relativistic limits,

y − y0 =
1

2
αt2, (59a)

x− x0 = v0t. (59b)

Hint: Recall the series expansion

sinh−1 x = ln
(

x+
√
x2 + 1

)

= x+ . . . . (60)
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