Midterm Exam No. 02 (2022 Spring)
 PHYS 205A-001: UNIVERSITY PHYSICS
 Department of Physics, Southern Illinois University-Carbondale Date: 2022 Mar 4

(Name)
(Signature)

Instructions

- Seating direction: Please be seated on seats with seat numbers divisible by 2 .
- Total time $=50$ minutes.
- There are 7 questions in this exam.
- Equation sheet is provided separately.
- To be considered for partial credit present your work in detail and organize it clearly.
- A simple calculator (with trigonometric functions) is allowed.
- Use of mobile phones is strictly prohibited. It should stay out of reach during the exam.

1. (5 points.) The gravitational force exerted by Earth, (mass $M=6.0 \times 10^{24} \mathrm{~kg}$,) on a mass $m=10.0 \mathrm{~kg}$ is

$$
\begin{equation*}
m g=98 \mathrm{~N} \tag{1}
\end{equation*}
$$

and points towards the center of Earth. What is the magnitude of the gravitational force exerted by the mass m on Earth?
2. (5 points.) A cup of coffee is on a table in an airplane flying at a constant altitude and a constant velocity. The coefficient of static friction between the cup and the table is 0.50 and the coefficient of kinetic friction between the cup and the table is 0.30 . Suddenly, the plane accelerates forward, its altitude remaining constant. What is the direction of the friction force with respect to the velocity of the airplane?
3. (5 points.) You are driving a car on an icy (frictionless) flat (unbanked) road. How will you maneuver a right turn without sliding while perfectly rolling?
4. ($\mathbf{1 0}$ points.) Your mass is 75 kg . How much will you weigh on a bathroom scale (designed to measure the normal force in Newtons) inside an elevator that is slowing down at $2.0 \mathrm{~m} / \mathrm{s}^{2}$ while moving upward?
5. ($\mathbf{1 0}$ points.) Two masses $m_{1}=10.0 \mathrm{~kg}$ and $m_{2}=20.0 \mathrm{~kg}$ are stacked together on a frictionless plane. A force \mathbf{F} is exerted on m_{2}. See Figure 1. Given $F=33$ N. Determine the contact force exerted by mass m_{1} on mass m_{2}.

Figure 1: Problem 5.
6. (10 points.) A mass m_{2} is connected to another mass $m_{1}=1.0 \mathrm{~kg}$ by a massless (inextensible) string passing over a massless pulley as described in Figure 2. The coefficient of static friction between mass m_{1} and the surface is 0.50 and the coefficient of kinetic friction between the block and plane is 0.25 . Determine the minimum mass m_{2} for which the mass m_{1} starts moving.

Figure 2: Problem 6
7. (10 points.) Consider the case of drag force that is linearly proportional to velocity. For a mass m falling under gravity and experiencing such a drag force after starting from rest we have the equation of motion

$$
\begin{equation*}
m \frac{d v}{d t}=m g-b v \tag{2}
\end{equation*}
$$

which leads to the solution

$$
\begin{equation*}
v(t)=v_{T}\left(1-e^{-\frac{t}{\tau}}\right) \tag{3}
\end{equation*}
$$

where the terminal velocity v_{T} is defined by requiring $d v / d t=0$, that is

$$
\begin{equation*}
v_{T}=\frac{m g}{b} \tag{4}
\end{equation*}
$$

and $\tau=v_{T} / g$ is the time constant and sets the scale for time. Given $v_{T}=9.8 \mathrm{~mm} / \mathrm{s}$, determine the time it takes for the mass to attain 95% of the terminal velocity.

