(Last updated: May 9, 2017)
This list will evolve during the semester.

1. Electrostatics:
(a) Charge and masses:

$$
\begin{equation*}
e=1.60 \times 10^{-19} \mathrm{C}, \quad m_{e}=9.11 \times 10^{-31} \mathrm{~kg}, \quad m_{p}=1.67 \times 10^{-27} \mathrm{~kg} . \tag{1}
\end{equation*}
$$

(b) Coulomb's law:

$$
\begin{equation*}
\overrightarrow{\mathbf{F}}=\frac{k q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}}, \quad k=\frac{1}{4 \pi \varepsilon_{0}}, \quad k=8.99 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}, \quad \varepsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}} \tag{2}
\end{equation*}
$$

(c) Electric fields:

$$
\begin{equation*}
\overrightarrow{\mathbf{E}}=\frac{k q}{r^{2}} \hat{\mathbf{r}}, \quad \overrightarrow{\mathbf{F}}=q \overrightarrow{\mathbf{E}} \tag{3}
\end{equation*}
$$

(d) Electric flux and Gauss' law:

$$
\begin{equation*}
\Phi_{E}=\overrightarrow{\mathbf{E}} \cdot \overrightarrow{\mathbf{A}}=E A \cos \theta, \quad \quad \Phi_{E}=\frac{Q_{\mathrm{en}}}{\varepsilon_{0}} \tag{4}
\end{equation*}
$$

(e) Electric potential energy and electric potential:

$$
\begin{equation*}
U=\frac{k q_{1} q_{2}}{r}, \quad V=\frac{k q}{r}, \quad U=V q \tag{5}
\end{equation*}
$$

(f) Capacitance:

$$
\begin{equation*}
C=\frac{Q}{V}, \quad U=\frac{1}{2} Q V, \quad u=\frac{1}{2} \varepsilon_{0} E^{2} . \tag{6}
\end{equation*}
$$

(g) Parallel-plate capacitor:

$$
\begin{equation*}
E=\frac{Q}{\varepsilon_{0} A}, \quad C=\frac{\varepsilon_{0} A}{d}, \quad V=E d . \tag{7}
\end{equation*}
$$

2. Electrial circuits:
(a) Current: $I=\frac{Q}{\Delta t}$,
Resistance: $R=\frac{\rho l}{A}$,
$\rho-\rho_{0}=\alpha \rho_{0}\left(T-T_{0}\right)$,
(b) Ohm's law: $V=I R, \quad$ Power: $P=I V=I^{2} R=\frac{V^{2}}{R}$.

1
(c) Inductance:

$$
\begin{equation*}
V=L \frac{\Delta I}{\delta t}, \quad L=\mu_{0} n^{2} A l, \quad U=\frac{1}{2} L I^{2}, \quad u=\frac{1}{2 \mu_{0}} B^{2} . \tag{16}
\end{equation*}
$$

5. Electromagnetic waves:
(a) Speed of light: $c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
(b) Energy density: $\quad u=\frac{1}{2} \varepsilon_{0} E^{2}+\frac{1}{2 \mu_{0}} B^{2}=\varepsilon_{0} E^{2}=\frac{1}{\mu_{0}} B^{2}$.
(c) Doppler effect: $f^{\prime}=f\left(1 \pm \frac{v_{\text {rel }}}{c}\right)$, for $v_{\text {rel }} \ll c$.
(d) Polarization:

$$
I^{\prime}= \begin{cases}\frac{1}{2} I_{0}, & \text { for unpolarized light }, \tag{17}\\ I_{0} \cos ^{2} \theta, & \text { for polarized light }\end{cases}
$$

6. Ray optics:
(a) General equations:

$$
\begin{equation*}
\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f}, \quad R=2 f, \quad m=\frac{h_{i}}{h_{o}}=-\frac{d_{i}}{d_{o}} \tag{18}
\end{equation*}
$$

(b) Refraction:

$$
\begin{equation*}
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}, \quad n=\frac{c}{v}, \quad c=2.997 \times 10^{8} \mathrm{~m} / \mathrm{s} . \tag{19}
\end{equation*}
$$

(c) Resistors:

$$
\begin{array}{ll}
R_{\mathrm{tot}}=R_{1}+R_{2} & \quad \text { (series }) \\
\frac{1}{R_{\mathrm{tot}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \quad(\text { parallel }) \tag{8b}
\end{array}
$$

(d) Capacitors:

$$
\begin{align*}
C_{\mathrm{tot}} & =C_{1}+C_{2} \tag{9a}\\
\frac{1}{C_{\mathrm{tot}}} & =\frac{1}{C_{1}}+\frac{1}{C_{2}} \tag{9b}
\end{align*}
$$

3. Magnetostatics:
(a) Magnetic force:

$$
\begin{equation*}
|\overrightarrow{\mathbf{F}}|=q v B \sin \theta, \quad|\overrightarrow{\mathbf{F}}|=I L B \sin \theta, \quad \omega=\frac{q}{m} B . \tag{10}
\end{equation*}
$$

Right hand rule-1: Fingers-v/I, Palm- B, Thumb- F.
(b) Torque on current loop:

$$
\begin{equation*}
\tau=N I A B \sin \theta \tag{11}
\end{equation*}
$$

(c) Magnetic fields for some relevant configurations:

Straight wire segment :	B	$=\frac{\mu_{0} I}{4 \pi r}\left(\sin \theta_{1}+\sin \theta_{2}\right)$,	
Infinite wire :	B	$=\frac{\mu_{0} I}{2 \pi r}$,	$(12 \mathrm{a})$
Circular segment of wire :	B	$=\frac{\mu_{0} I}{4 \pi R} \theta$,	(12b)
Circular loop :	B	$=\frac{\mu_{0} I}{2 R}$,	(12d)
Solenoid :	B	$=\mu_{0} I n, \quad n=N / L$.	

Magnetic permeability: $\quad \mu_{0}=4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}$.
(d) Ampere's law:

$$
\begin{equation*}
\sum B \Delta l \cos \theta=\mu_{0} I_{\mathrm{en}} . \tag{13}
\end{equation*}
$$

4. Faraday's law of induction:
(a) Magnetic flux:

$$
\begin{align*}
& \Phi_{B}=B A \cos \theta . \tag{14}\\
& V_{\mathrm{eff}}=-N \frac{\Delta \Phi_{B}}{\Delta t .} \tag{15}
\end{align*}
$$

Electric generator: $\quad V=N A B \omega \sin \omega t$.
Transformer: $\quad \frac{V_{p}}{V_{s}}=\frac{N_{p}}{N_{s}}=\frac{I_{s}}{I_{p}}$.
2

Equation Sheet for PHYS-203A College Physics

(Last updated: August 23, 2016)
This list will evolve during the semester.

1. General mathematics:
(a) Units:

$$
\begin{aligned}
c & =10^{-2}, & m & =10^{-3}, & \mu & =10^{-6}, & n & =10^{-9}, \\
d & =10^{2}, & k & =10^{3}, & M & =10^{6}, & & G=10^{-12},
\end{aligned} \quad T=10^{12} .
$$

(b) Trigonometry:

$$
\begin{equation*}
\sin \theta=\frac{\text { opp. to angle }}{\text { hypotenuse }}, \quad \cos \theta=\frac{\text { adj. to angle }}{\text { hypotenuse }}, \quad \tan \theta=\frac{\text { opp. to angle }}{\text { adj to angle }} . \tag{2}
\end{equation*}
$$

(c) Pythagorean theorem: $A^{2}=A_{x}^{2}+A_{y}^{2}$.
(d) Quadratic equation: $a x^{2}+b x+c=0$

$$
\begin{equation*}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} . \tag{3}
\end{equation*}
$$

. Kinematic equations:
(a) Constant speed $(a=0): \quad \Delta x=v \Delta t$.
(b) Constant acceleration:

$$
\begin{array}{rlrl}
v_{f} & =v_{i}+a \Delta t ; & \Delta x=v_{i} \Delta t+\frac{1}{2} a \Delta t^{2} ; & v_{f}^{2}=v_{i}^{2}+2 a \Delta x \\
\frac{\Delta x}{\Delta t} & =\frac{v_{i}+v_{f}}{2} ; & \Delta x=v_{f} \Delta t-\frac{1}{2} a \Delta t^{2} \tag{4~b}
\end{array}
$$

(c) Acceleration due to gravity: $g=9.80 \mathrm{~m} / \mathrm{s}^{2}$.
(d) Time of flight, horizontal range, and maximum height in projectile motion:

$$
\begin{equation*}
T=\frac{2 v_{0} \sin \theta_{0}}{g}, \quad R=\frac{v_{0}^{2} \sin 2 \theta_{0}}{g}, \quad H=\frac{v_{0}^{2} \sin ^{2} \theta_{0}}{2 g} \tag{5}
\end{equation*}
$$

(e) Relative velocity: $\quad \overrightarrow{\mathbf{v}}_{A B}=\overrightarrow{\mathbf{v}}_{A G}-\overrightarrow{\mathbf{v}}_{B G}$.
3. Forces:

1
(a) Newton's law:

$$
\begin{equation*}
\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}+\overrightarrow{\mathbf{F}}_{3}+\ldots=m \overrightarrow{\mathbf{a}} . \tag{6}
\end{equation*}
$$

(b) Gravitational force:

$$
\begin{equation*}
F_{G}=\frac{G m_{1} m_{2}}{R^{2}}, \quad G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \tag{7}
\end{equation*}
$$

(c) Force due to friction:

$$
\begin{align*}
& F_{f} \leq \mu_{s} N, \quad(\text { static }) \tag{8a}\\
& F_{f}=\mu_{k} N, \quad \text { (kinetic) } \tag{8b}
\end{align*}
$$

(d) Force due to a spring:

$$
\begin{equation*}
F=-k x . \tag{8c}
\end{equation*}
$$

(e) Circular motion:

$$
\begin{align*}
& v=\omega r, \quad \omega=2 \pi f, \quad f=\frac{1}{T}, \tag{9}\\
& a_{c}=\frac{v^{2}}{r}=\omega^{2} r=4 \pi^{2} f^{2} r=\frac{4 \pi^{2}}{T^{2}} r \tag{10}
\end{align*}
$$

4. Work and energy:
(a) Kinetic energy:

$$
K=\frac{1}{2} m v^{2}
$$

(b) Work done by a force:

$$
W=F d \cos \theta
$$

(c) Work-kinetic energy theorem:

$$
\begin{equation*}
W_{1}+W_{2}+\ldots=\Delta K \tag{13}
\end{equation*}
$$

(d) Buoyant force:

$$
\begin{equation*}
B=m_{\mathrm{dis}} g \tag{30}
\end{equation*}
$$

where $m_{\mathrm{dis}}=\rho_{\mathrm{dis}} V_{\mathrm{dis}}$ is the mass of the displaced liquid.
(e) Continuity equation:

$$
A_{1} v_{1}=A_{2} v_{2}
$$

(f) Bernoulli's equation:

$$
P+\rho h g+\frac{1}{2} \rho v^{2}=\text { const }
$$

8. Waves and oscillations:

$$
\begin{equation*}
T=\frac{1}{f}=\frac{2 \pi}{\omega}, \quad \lambda=\frac{2 \pi}{k}, \quad v=\lambda f . \tag{33}
\end{equation*}
$$

(a) Simple pendulum:

$$
\begin{equation*}
T=2 \pi \sqrt{\frac{L}{g}} \tag{34}
\end{equation*}
$$

(b) Mass-spring system:

$$
\begin{equation*}
T=2 \pi \sqrt{\frac{m}{k}} \tag{35}
\end{equation*}
$$

(c) Speed of a wave on a string:

$$
\begin{equation*}
v=\sqrt{\frac{F_{T}}{\mu}} \tag{36}
\end{equation*}
$$

Sound waves:
(a) Speed of sound in air:

$$
\begin{equation*}
v=331+0.6 T \tag{37}
\end{equation*}
$$

measured in m / s, where T is the temperature in ${ }^{\circ} \mathrm{C} . v=343 \mathrm{~m} / \mathrm{s}$ at $20^{\circ} \mathrm{C}$.
(b) Resonance in strings and tubes:

$$
\begin{equation*}
L=n \frac{\lambda}{2}, \quad L=(2 n-1) \frac{\lambda}{4}, \quad n=1,2,3, \ldots \tag{38}
\end{equation*}
$$

(c) Intensity in decibels:

$$
\begin{equation*}
\beta=10 \log \left(\frac{I}{I_{0}}\right), \quad I_{0}=10^{-12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}, \quad I=\frac{\text { Power }}{\text { Area }} \tag{39}
\end{equation*}
$$

measured in decibels.
(d) Doppler effect:

$$
\begin{equation*}
f^{\prime}=f \frac{v_{0} \pm v_{D}}{v_{0} \pm v_{S}} \tag{40}
\end{equation*}
$$

