Equation Sheet for PHYS-203B College Physics

(Last updated: May 9, 2017) This list will evolve during the semester.

- 1. Electrostatics:
 - (a) Charge and masses:
 - $e = 1.60 \times 10^{-19}\,{\rm C}, \quad m_e = 9.11 \times 10^{-31}\,{\rm kg}, \quad m_p = 1.67 \times 10^{-27}\,{\rm kg}. \tag{1}$ (b) Coulomb's law:
 - $\vec{\mathbf{F}} = \frac{kq_1q_2}{r^2}\hat{\mathbf{r}}, \quad k = \frac{1}{4\pi\varepsilon_0}, \quad k = 8.99 \times 10^9 \frac{\mathrm{N}\,\mathrm{m}^2}{\mathrm{C}^2}, \quad \varepsilon_0 = 8.85 \times 10^{-12} \frac{\mathrm{C}^2}{\mathrm{N}\,\mathrm{m}^2}. \tag{2}$
 - (c) Electric fields:
- $\vec{\mathbf{E}} = \frac{kq}{r^2}\hat{\mathbf{r}}, \qquad \vec{\mathbf{F}} = q\,\vec{\mathbf{E}}.$

(3)

(d) Electric flux and Gauss' law:

$$\Phi_E = \vec{\mathbf{E}} \cdot \vec{\mathbf{A}} = EA \cos \theta, \qquad \Phi_E = \frac{Q_{\text{en}}}{\varepsilon_0}. \tag{4}$$

(e) Electric potential energy and electric potential:

$$U = \frac{kq_1q_2}{r}, \qquad V = \frac{kq}{r}, \qquad U = Vq.$$
(5)

(f) Capacitance:

$$C = \frac{Q}{V}, \qquad U = \frac{1}{2}QV, \qquad u = \frac{1}{2}\varepsilon_0 E^2. \tag{6}$$

$$E = \frac{Q}{\varepsilon_0 A}, \qquad C = \frac{\varepsilon_0 A}{d}, \qquad V = Ed.$$
 (7)

2. Electrial circuits:

(a) Current:
$$I = \frac{Q}{\Delta t}$$
, Resistance: $R = \frac{\rho l}{A}$, $\rho - \rho_0 = \alpha \rho_0 (T - T_0)$,
(b) Ohm's law: $V = IR$, Power: $P = IV = I^2 R = \frac{V^2}{R}$.

$$V = L \frac{\Delta I}{\delta t}, \quad L = \mu_0 n^2 A l, \quad U = \frac{1}{2} L I^2, \quad u = \frac{1}{2\mu_0} B^2.$$
(16)

5. Electromagnetic waves:

- (a) Speed of light: $c = 2.998 \times 10^8 \,\mathrm{m/s}.$
- (b) Energy density: $u = \frac{1}{2}\varepsilon_0 E^2 + \frac{1}{2\mu_0}B^2 = \varepsilon_0 E^2 = \frac{1}{\mu_0}B^2.$

(c) Doppler effect:
$$f' = f\left(1 \pm \frac{v_{\rm rel}}{c}\right)$$
, for $v_{\rm rel} \ll c$.

(d) Polarization:

$$I' = \begin{cases} \frac{1}{2}I_0, & \text{for unpolarized light,} \\ I_0 \cos^2 \theta, & \text{for polarized light.} \end{cases}$$
(17)

6. Ray optics:

(a) General equations:

$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}, \qquad R = 2f, \qquad m = \frac{h_i}{h_o} = -\frac{d_i}{d_o}.$$
 (18)

(b) Refraction:

$$n_1 \sin \theta_1 = n_2 \sin \theta_2, \qquad n = \frac{c}{r}, \qquad c = 2.997 \times 10^8 \,\mathrm{m/s.}$$
 (19)

3

(c) Resistors:			
	$R_{\rm tot} = R_1 + R_2$	(series)	(8a)
	$\frac{1}{R_{\rm tot}} = \frac{1}{R_1} + \frac{1}{R_2}$	(parallel)	(8b)
(d) Capacitors:			
	$C_{\rm tot} = C_1 + C_2$	(parallel)	(9a)
	$\frac{1}{C_{\rm tot}} = \frac{1}{C_1} + \frac{1}{C_2}$	(series)	(9b)
3. Magnetostatics:			

(a) Magnetic force:

(a)	Magnetic force:			
	$ \vec{\mathbf{F}} = qvB\sin\theta,$	$ \vec{\mathbf{F}} = ILB$	$B\sin\theta, \omega = \frac{q}{m}B.$	(10)
	Right hand rule-1: Fingers- v/I ,	Palm-B,	Thumb- F .	
(b)	Torque on current loop:			
()	τ	$= NIAB \sin$	n θ.	(11)
(c)	Magnetic fields for some relevant co	onfiguration	s:	
	Straight wire segment	:	$B = \frac{\mu_0 I}{4\pi r} (\sin \theta_1 + \sin \theta_2),$	(12a)
	Infinite wire	:	$B = \frac{\mu_0 I}{2\pi r},$	(12b)
	Circular segment of wire	:	$B = \frac{\mu_0 I}{4\pi R} \theta,$	(12c)
	Circular loop	1	$B = \frac{\mu_0 I}{2R},$	(12d)
	Solenoid	l:	$B = \mu_0 In, n = N/L.$	(12e)
	Magnetic permeability: $\mu_0 = 4\pi$	$\times 10^{-7} \mathrm{Tm}/$	А.	
(d)	Ampere's law:			
(-)	$\sum I$	$B\Delta l\cos\theta =$	$\mu_0 I_{\rm en}.$	(13)
4. Fara	day's law of induction:			
(a)	Magnetic flux:			
	~ 4	$p_B = BA\cos^2\theta$	εθ.	(14)
(b)	Induced voltage:			
		- Δ.ď)n	

$$V_{\text{eff}} = -N \frac{\Delta \Phi_B}{\Delta t}.$$

$$= NAB\omega \sin \omega t.$$
(15)

Electric generator:
$$V = NAB\omega \sin \omega t.$$

Transformer: $\frac{V_p}{V_s} = \frac{N_p}{N_s} = \frac{I_s}{I_p}.$

Equation Sheet for PHYS-203A College Physics

(Last updated: August 23, 2016) This list will evolve during the semester.

- 1. General mathematics:
 - (a) Units:

$c = 10^{-2}$,	$m = 10^{-3}$,	$\mu = 10^{-6}$,	$n = 10^{-9}$,	$p = 10^{-12}$.	(1a)
$d = 10^2$,	$k = 10^3$,	$M = 10^{6}$,	$G = 10^9$,	$T = 10^{12}.$	(1b)

(b) Trigonometry:

$\sin \theta = \frac{\text{opp. to angle}}{\text{hypotenuse}},$	$\cos \theta = \frac{\text{adj. to angle}}{\text{hypotenuse}},$	$ \tan \theta = \frac{\text{opp. to angle}}{\text{adj to angle}}. $	(2)
---	---	---	-----

(c) Pythagorean theorem: $A^2 = A_x^2 + A_y^2$. (d)

Quadratic equation:
$$a x^2 + b x + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$
(3)

2. Kinematic equations:

(a) Constant speed (a = 0): $\Delta x = v \Delta t.$

$$v_f = v_i + a \Delta t;$$
 $\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2;$ $v_f^2 = v_i^2 + 2 a \Delta x;$ (4a)
 $\frac{\Delta x}{\Delta t} = \frac{v_i + v_f}{2};$ $\Delta x = v_f \Delta t - \frac{1}{2} a \Delta t^2.$ (4b)

(c) Acceleration due to gravity:
$$g = 9.80 \text{ m/s}^2$$
.

(d) Time of flight, horizontal range, and maximum height in projectile motion:

1

$$T = \frac{2v_0 \sin \theta_0}{g}, \qquad R = \frac{v_0^2 \sin 2\theta_0}{g}, \qquad H = \frac{v_0^2 \sin^2 \theta_0}{2g}.$$
 (5)

(e) Relative velocity:
$$\vec{\mathbf{v}}_{AB} = \vec{\mathbf{v}}_{AG} - \vec{\mathbf{v}}_{BG}$$

(a) Conservation of linear momentum:

3. Forces:

$m_1\vec{\mathbf{v}}_{1i}+m_2\vec{\mathbf{v}}_{2i}+\ldots=m_1\vec{\mathbf{v}}_{1f}+m_2\vec{\mathbf{v}}_{2f}+\ldots$	(18)
(b) Elastic collision in 1-D: $v_{1i}+v_{1f}=v_{2i}+v_{2f}. \label{eq:v1i}$	(19)
(c) Center of mass: $X_{\rm cm} = \frac{m_1 x_1 + m_2 x_2 + \ldots}{m_1 + m_2 + \ldots}.$	(20)
6. Rotational dynamics:	
 (a) Kinematic equations: i. Constant angular speed (α = 0): Δθ = ωΔt. ii. Constant angular acceleration: 	
$\omega_f = \omega_i + \alpha \Delta t, \qquad \Delta \theta = \omega_i \Delta t + \frac{1}{2} \alpha \Delta t^2,$	(21)
$\omega_f^2 = \omega_i^2 + 2\alpha\Delta\theta, \qquad \Delta\theta = \omega_f \Delta t - \frac{1}{2}\alpha\Delta t^2, \qquad \frac{\Delta\theta}{\Delta t} = \frac{\omega_i + \omega_f}{2}$	(22)
(b) Rotational inertia (moment of inertia) of a point mass:	
$I = MR^2.$	(23)
(c) Torque: $\tau = RF\sin\theta. \label{eq:tau}$	(24)
(d) Rotational kinetic energy: $K_{\rm rot} = \frac{1}{2} I \omega^2. \label{eq:Krot}$	(25)
(e) Angular momentum: $L=I\omega. \label{eq:L}$	(26)
7. Fluid dynamics:	
(a) Denisty-mass relation: $m=\rho V. \label{eq:mass}$	(27)
Density of water $= 10^3 \text{ kg/m}^3$.	
(b) Pressure: $P = \frac{F}{A}.$	(28)
(c) Pressure in a static fluid: $P_2 = P_1 + \rho hg. \label{eq:P2}$	(29)
$1 \text{ atm} = 1.01 \times 10^5 \text{ N/m}^2.$	

(a) Newton's law:	
	$\mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3 + \ldots = m \mathbf{\vec{a}}.$

(b) Gravitational force: $F_G = \frac{Gm_1m_2}{R^2}, \qquad G = 6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2.$

(7)(c) Force due to friction:

> $F_f \leq \mu_s N$, (static), (8a) $F_f = \mu_k N$, (kinetic). (8b)

(6)

(d) Force due to a spring:

F = -kx.(8c) (e) Circular motion:

$$v = \omega r, \qquad \omega = 2\pi f, \qquad f = \frac{1}{T},$$
 (9)
 $a_c = \frac{v^2}{r} = \omega^2 r = 4\pi^2 f^2 r = \frac{4\pi^2}{T^2} r$ (10)

 $K = \frac{1}{2}mv^2$ (11)

(b) Work done by a force:

$$W = Fd\cos\theta$$
 (12)
(c) Work-kinetic energy theorem:

 $W_1 + W_2 + \ldots = \Delta K$ (13)(d) Potential energy due to gravity:

 $U_q = mgh$ (14)(e) Potential energy due to spring: 1

$$U_s = \frac{1}{2}kx^2 \tag{15}$$
 (f) Mechanical energy:

$$E_{\rm mech} = K + U_a + U_s \tag{16}$$

5. Linear momentum:

$$\vec{\mathbf{p}} = m\vec{\mathbf{v}}, \quad \vec{\mathbf{p}}_f - \vec{\mathbf{p}}_i = \vec{\mathbf{F}}\Delta t.$$
 (17)

 2

(d) Buoyant force: B = m = a	(30)
$D = m_{\rm dis} g$	(00)
where $m_{\rm dis} = \rho_{\rm dis} v_{\rm dis}$ is the mass of the displaced liquid.	
(e) Continuity equation: $A = -A = -A$	(21)
$A_1v_1 = A_2v_2$.	(31)
(f) Bernoulli's equation:	
$P + \rho hg + \frac{1}{2}\rho v^2 = \text{const}$	(32)
8. Waves and oscillations:	
$T = \frac{1}{f} = \frac{2\pi}{\omega}, \qquad \lambda = \frac{2\pi}{k}, \qquad v = \lambda f.$	(33)
(a) Simple pendulum:	
$T = 2\pi \sqrt{\frac{L}{g}}.$	(34)
(b) Mass-spring system:	
$T = 2\pi \sqrt{\frac{m}{k}}.$	(35)
(c) Speed of a wave on a string:	
$v = \sqrt{\frac{F_T}{\mu}}.$	(36)
9. Sound waves:	
(a) Speed of sound in air:	
v = 331 + 0.6T,	(37)
measured in m/s, where T is the temperature in °C. $v = 343$ m/s at 20°C.	
(b) Resonance in strings and tubes:	
$L = n \frac{\lambda}{2}, \qquad L = (2n-1) \frac{\lambda}{4}, \qquad n = 1, 2, 3, \dots$	(38)
(c) Intensity in decibels:	
$\beta = 10 \log \left(\frac{I}{I_0} \right), \qquad I_0 = 10^{-12} \frac{\mathrm{W}}{\mathrm{m}^2}, \qquad I = \frac{\mathrm{Power}}{\mathrm{Area}},$	(39)
measured in decibels.	
(d) Doppler effect:	
n + n	

$$f' = f \, \frac{v_0 \pm v_D}{v_0 \pm v_S}.$$

4

(40)