Homework No. 01 (Spring 2022)
PHYS 203B-001: COLLEGE PHYSICS
Department of Physics, Southern Illinois University-Carbondale Due date: Friday, 2022 Jan 21, 10:00am, on D2L

Instructions

- To the extent to which you depend on resources to complete this homework is a measure of how much extra work you need to put in to master the related concepts.
- Describe your thought process in detail and organize it clearly. Make sure your answer has the correct units and the right number of significant digits.
- After completion, scan the pages as a single PDF file, and submit the file on D2L (Assesments \rightarrow Assignments).

Problems

1. (10 points.)
(a) Determine the number of electrons in one nano-gram of electrons.
(b) Calculate the total electric charge on one nano-gram of electrons.

Solution

2. (10 points.) Two identical conducting spheres A and B carry equal charge. They are separated by a distance much larger than their diameters. A third identical conducting sphere C is uncharged. Sphere C is first touched to A, then to B, and finally removed.
(a) As a result, what is the charge on A, if it was originally Q.
(b) As a result, what is the charge on B, if it was originally Q.
(c) As a result, what is the electrostatic force between A and B, if it was originally F.

Solution

3. (10 points.) A pair of electric charges of equal magnitude q and opposite sign separated by distance a has an electric dipole moment

$$
\begin{equation*}
p=q a . \tag{1}
\end{equation*}
$$

It has a direction going from the negative charge to the positive charge. Determine the magnitude of the electric dipole moment constituting of an electron and a proton separated by a distance of $0.30 \AA$.

Solution

4. (10 points.) Four negative charges of equal magnitude $q=-3.00 \mu \mathrm{C}$ are placed at the corners of a square of length $L=10 \mathrm{~cm}$. Determine the magnitude of the force on one of the negative charge.

Solution

5. ($\mathbf{1 0}$ points.) Fig. 1 shows three point charges that lie in the $x-y$ plane. Given $q_{1}=$ $-4.0 \mu \mathrm{C}, q_{2}=+6.0 \mu \mathrm{C}, q_{3}=+5.0 \mu \mathrm{C}$, charges q_{1} and q_{2} are separated by a distance of 4.0 cm , and charges q_{1} and q_{3} are separated by a distance of 6.0 cm . Find the magnitude and direction of the net electrostatic force on charge q_{3}.

Figure 1: Problem 5

Solution

6. (10 points.) What is the magnitude and direction of the instantaneous acceleration of an electron that has a total force of $\hat{\mathbf{i}} 2.0 \times 10^{-19} \mathrm{~N}$ acting on it. Here $\hat{\mathbf{i}}$ denotes the direction of the force along the positive x axis.

Solution

