Homework No. 10 (Fall 2021)
PHYS 500A: MATHEMATICAL METHODS
Department of Physics, Southern Illinois University-Carbondale
Due date: Friday, 2021 Dec 3, 4.30pm

The components $J_{i}(i=1,2,3)$ of angular momentum \mathbf{J} satisfy the commutation relations

$$
\begin{equation*}
\frac{1}{i \hbar}\left[J_{i}, J_{j}\right]=\varepsilon_{i j k} J_{k} . \tag{1}
\end{equation*}
$$

The general properties of angular momentum can be deduced from these commutation relations. Since \mathbf{J}^{2} is a scalar, it commutes with angular momentum \mathbf{J}. That is,

$$
\begin{equation*}
[\mathbf{J} \cdot \mathbf{J}, \mathbf{J}]=0 . \tag{2}
\end{equation*}
$$

Thus, the common eigenvectors of \mathbf{J}^{2} and J_{z} constitute a suitable set of basis vectors for discussing a dynamical system involving only the angular momentum. Let us denote the eigenvalues of these operators by the labeling scheme $\mathbf{J}^{\prime 2}=j(j+1) \hbar^{2}$, and $J_{z}{ }^{\prime}=m \hbar$. Thus, we write

$$
\begin{align*}
\frac{1}{\hbar^{2}} \mathbf{J}^{2}|j, m\rangle & =j(j+1)|j, m\rangle, \tag{3a}\\
\frac{1}{\hbar} J_{z}|j, m\rangle & =m|j, m\rangle \tag{3b}
\end{align*}
$$

Let us also construct (non-Hermitian) operators

$$
\begin{equation*}
J_{ \pm}=J_{x} \pm i J_{y} . \tag{4}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
J_{ \pm}^{\dagger}=J_{\mp} . \tag{5}
\end{equation*}
$$

1. Show that

$$
\begin{equation*}
\frac{1}{\hbar} J_{z}\left\{J_{+}|j, m\rangle\right\}=(m+1)\left\{J_{+}|j, m\rangle\right\} \tag{6}
\end{equation*}
$$

Thus deduce that if m is an eigenvalue of J_{z}, then $(m+1)$ is also an eigenvlaue of J_{z}. Similarly, show that

$$
\begin{equation*}
\frac{1}{\hbar} J_{z}\left\{J_{-}|j, m\rangle\right\}=(m-1)\left\{J_{-}|j, m\rangle\right\} . \tag{7}
\end{equation*}
$$

Thus deduce that if m is an eigenvalue of J_{z}, then $(m-1)$ is also an eigenvlaue of J_{z}.
2. Show that

$$
\begin{equation*}
J_{+} J_{-}=\mathbf{J}^{2}-J_{z}^{2}+\hbar J_{z} \tag{8}
\end{equation*}
$$

is a Hermitian operator. A Hermitian operator has real eigenvalues, but, since $J_{+} J_{-}=$ $J_{-}^{\dagger} J_{-}$, infer further that it has non-negative eigenvalues. Thus, deduce that

$$
\begin{equation*}
j(j+1)-m(m-1) \geq 0, \tag{9}
\end{equation*}
$$

and then infer

$$
\begin{equation*}
-j \leq m \leq j+1 \tag{10}
\end{equation*}
$$

Similarly, show how that

$$
\begin{equation*}
J_{-} J_{+}=\mathbf{J}^{2}-J_{z}^{2}-\hbar J_{z} \tag{11}
\end{equation*}
$$

is a Hermitian operator, and deduce that

$$
\begin{equation*}
j(j+1)-m(m+1) \geq 0 \tag{12}
\end{equation*}
$$

and then infer

$$
\begin{equation*}
-j-1 \leq m \leq j \tag{13}
\end{equation*}
$$

Using Eqs. (10) and (13) in conjunction, show that

$$
\begin{equation*}
-j \leq m \leq j \tag{14}
\end{equation*}
$$

(Refer Sec. 36 Dirac's QM book.)
3. Using Eq. (14) infer that

$$
\begin{equation*}
j \geq 0 \tag{15}
\end{equation*}
$$

Note that \mathbf{J}^{2} being the square of a Hermitian operator implies $j(j+1) \geq 0$, but it does not imply that j should be non-negative.
4. The $2 j$ transitions from $m=-j$ to $m=j$ happen in $n=0,1,2, \ldots$ steps. Thus, $2 j=n$. Thus, conclude that

$$
\begin{align*}
j & =0, \frac{1}{2}, 1, \frac{3}{2}, \ldots \tag{16a}\\
m & =-j,-j+1, \ldots, j \tag{16b}
\end{align*}
$$

