Homework No. 06 (Fall 2021)
 PHYS 500A: MATHEMATICAL METHODS
 Department of Physics, Southern Illinois University-Carbondale Due date: Tuesday, 2021 Oct 5, 4.30pm

1. (20 points.) Evaluate the contour integral

$$
\begin{equation*}
I=\frac{1}{2 \pi i} \oint_{c} d z \frac{e^{i z}}{\left(z^{2}-a^{2}\right)}, \tag{1}
\end{equation*}
$$

where the contour c is a unit circle going counterclockwise with center at the origin. Inquire the cases when $|a|>1$ and $|a|<1$.
2. ($\mathbf{2 0}$ points.) Evaluate the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{d x e^{i a x}}{x^{2}+1} \tag{2}
\end{equation*}
$$

using Cauchy's theorem, after choosing a suitable contour. Here a is real.
3. (20 points.) Consider the integral

$$
\begin{equation*}
I(a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta \frac{1}{1-2 a \cos \theta+a^{2}}, \tag{3}
\end{equation*}
$$

where a is complex.
(a) Substitute $z=e^{i \theta}$, such that

$$
\begin{equation*}
2 \cos \theta=z+\frac{1}{z} \tag{4}
\end{equation*}
$$

and express the integral as a contour integral along the unit circle going counterclockwise. Locate the poles.
(b) Evaluate the residues and show that

$$
I(a)= \begin{cases}\frac{1}{1-a^{2}}, & \text { if }|a|<1 \tag{5}\\ \frac{1}{a^{2}-1}, & \text { if }|a|>1\end{cases}
$$

(c) Plot $I(a)$ for real values of a. Plot real and imaginary part of $I(a)$ for complex a. Argue that $I(1)$ is divergent.

