Homework No. 02 (Fall 2021)
 PHYS 203A: COLLEGE PHYSICS
 Department of Physics, Southern Illinois University-Carbondale
 Due date: Tuesday, 2021 Aug 31, 12.30pm, on D2L

Instructions

- Describe your thought process in detail and organize it clearly. Make sure your answer has the correct units and the right number of significant digits.
- After completion, scan the pages as a single PDF file, and submit the file on D2L (Assesments \rightarrow Assignments).

1. ($\mathbf{1 0}$ points.) Motion of an object moving with uniform velocity is described by the equation

$$
\begin{equation*}
x=v t \tag{1}
\end{equation*}
$$

where x is the position of the object, v is the velocity of the object, and t is time.
(a) Plot x versus t for $v=3.0 \mathrm{~m} / \mathrm{s}$.
(b) Determine the position of the object at $t=0 \mathrm{~s}$, and mark this point on the plot. Repeat this for $t=1.0 \mathrm{~s}, 2.0 \mathrm{~s}, 3.0 \mathrm{~s}, 4.0 \mathrm{~s}$.
(c) What is the acceleration of the object?
2. (10 points.) Motion of an object moving with uniform acceleration, after starting from rest, is described by the equation

$$
\begin{equation*}
x=\frac{1}{2} a t^{2} \tag{2}
\end{equation*}
$$

where x is the position of the object, a is the acceleration of the object, and t is time.
(a) Plot x versus t for $a=2.0 \mathrm{~m} / \mathrm{s}^{2}$.
(b) Determine the position of the object at $t=0 \mathrm{~s}$, and mark this point on the plot. Repeat this for $t=1.0 \mathrm{~s}, 2.0 \mathrm{~s}, 3.0 \mathrm{~s}, 4.0 \mathrm{~s}$.
(c) The slope in a position-time plot represents velocity. Using this idea estimate the velocity of the object at $t=2.0 \mathrm{~s}$ graphically.
3. (10 points.) A motorcycle has a constant acceleration of $2.0 \mathrm{~m} / \mathrm{s}^{2}$. Both the velocity and acceleration of the motorcycle point in the same direction.
(a) How much time is required for the motorcycle to change its speed from $10.0 \mathrm{~m} / \mathrm{s}$ to $20.0 \mathrm{~m} / \mathrm{s}$?
(b) How much time is required for the motorcycle to change its speed from $20.0 \mathrm{~m} / \mathrm{s}$ to $30.0 \mathrm{~m} / \mathrm{s}$?
(c) How much time is required for the motorcycle to change its speed from $30.0 \mathrm{~m} / \mathrm{s}$ to $40.0 \mathrm{~m} / \mathrm{s}$?
4. (10 points.) While standing on a 50.0 m tall building you throw a stone straight upwards at a speed of $15 \mathrm{~m} / \mathrm{s}$.
(a) How long does the stone take to reach the ground?
(b) How high above the building does the stone reach?
5. ($\mathbf{1 0}$ points.) A fish is dropped by a pelican that is rising steadily at a speed $4.0 \mathrm{~m} / \mathrm{s}$. Determine the time taken for the fish to reach the water 15.0 m below. How high above the water is the pelican when the fish reaches the water?
6. (10 points.) A car is traveling at $10.0 \mathrm{~m} / \mathrm{s}$, and the driver sees a traffic light turn red. After 0.500 s (the reaction time), the driver applies the brakes, and the car decelerates at $8.00 \mathrm{~m} / \mathrm{s}^{2}$. What is the stopping distance of the car, as measured from the point where the driver first sees the red light?
7. (10 points.) A speeding car is moving at a constant speed of $v=80.0 \mathrm{miles} /$ hour $(35.8 \mathrm{~m} / \mathrm{s})$. A police car is initially at rest. As soon as the speeder crosses the police car the cop starts chasing the speeder at a constant acceleration of $a=2.0 \mathrm{~m} / \mathrm{s}^{2}$. Determine the time it takes for the cop to catch up with the speeder. Determine the distance traveled by the cop in this time.
8. (10 points.) A key falls from a bridge that is 50.0 m above the water. It falls directly into a boat that is moving with constant velocity, that was 10.0 m from the point of impact when the key was released. What is the speed of the boat?

