Homework No. 10 (Fall 2020)

PHYS 520A: ELECTROMAGNETIC THEORY I

Department of Physics, Southern Illinois University–Carbondale Due date: Friday, 2020 Dec 4, 11.00am Due date: None

1. (20 points.) Show that the speed of energy flow of a monochromatic electromagnetic wave in a dispersive medium (for slowly evolving field) when both ε and μ are frequency dependent is given by

$$\frac{v_E}{c} = \left[\frac{d}{d\omega} \left(\omega \sqrt{\frac{\varepsilon\mu}{\varepsilon_0\mu_0}}\right)\right]^{-1}.$$
(1)

Determine the speed of energy flow for the case

$$\mu = \mu_0 \quad \text{and} \quad \frac{\varepsilon}{\varepsilon_0} = 1 - \frac{\omega_p^2}{\omega^2} \tag{2}$$

to be

$$\frac{v_E}{c} = \sqrt{1 - \frac{\omega_p^2}{\omega^2}} < 1. \tag{3}$$

2. (20 points.) The constitutive relations in a nondispersive media are

$$\mathbf{D} = \varepsilon \mathbf{E},\tag{4a}$$

$$\mathbf{B} = \mu \mathbf{H},\tag{4b}$$

where ε and μ are constants. The ratio of speed of light in vacuum c to speed of light in the medium v is the refractive index of the medium

$$n = \frac{c}{v} = \sqrt{\frac{\varepsilon\mu}{\varepsilon_0\mu_0}}.$$
(5)

The theory of relativity states that velocity of energy flow can not be larger than the speed of light in vacuum. Thus, n > 1. Let $\mu = \mu_0$. Consider the dielectric model

$$\frac{\varepsilon(\omega)}{\varepsilon_0} = 1 + \frac{\omega_p^2}{\omega_0^2 - i\omega\gamma - \omega^2}.$$
(6)

This is a complex number, which means a complex velocity of propagation v and a complex index of refraction

$$n = n_r + in_i = \frac{c}{v} = \sqrt{\frac{\varepsilon(\omega)}{\varepsilon_0}}.$$
(7)

A complex refractive index signifies that the propagation is accompanied by absorption

$$e^{-i\omega\left(t-\frac{x}{v}\right)} = e^{-i\omega\left(t-n\frac{x}{c}\right)} = e^{-n_i\frac{\omega}{c}x}e^{-i\omega\left(t-n_r\frac{x}{c}\right)}.$$
(8)

Thus, c/n_r plays the role of phase velocity and $n_i\omega/c$ is a coefficient of absorption. Plot n_r as a function of ω and verify that it crosses the line n = 1 near $\omega = \omega_0$. Thus, apparently, signal in a dispersive medium violates causality. This contradiction was resolved by Sommerfeld and Brillouin in 1914. Translated versions of their papers have been published in a book titled 'Wave Propagation and Group Velocity' by Brillouin in 1960. The book is available at https://archive.org. Very briefly present the resolution here.