Homework No. 08 (Fall 2020)

PHYS 520A: ELECTROMAGNETIC THEORY I
Department of Physics, Southern Illinois University-Carbondale
Due date: Friday, 2020 Oct 30, 11.00am

1. (20 points.) Consider a solid right circular cylinder of radius R, with axis along the z axis and of infinite length, with uniform permanent polarization

$$
\begin{equation*}
\mathbf{P}(\mathbf{r}, t)=\mathbf{P}_{0} \theta(R-\rho) \tag{1}
\end{equation*}
$$

where $\rho^{2}=x^{2}+y^{2}$ and \mathbf{P}_{0} is perpendicular to the axis of the cylinder.
(a) Show that the effective charge density is given by the expression

$$
\begin{equation*}
\rho_{\mathrm{eff}}(\mathbf{r})=-\boldsymbol{\nabla} \cdot \mathbf{P}=\mathbf{P}_{0} \cdot \hat{\boldsymbol{\rho}} \delta(\rho-R) \tag{2}
\end{equation*}
$$

(b) Discuss the case when \mathbf{P}_{0} is parallel to the axis of the cylinder. Further, qualitatively, discuss the case if, in addition, the cylinder was of finite length in the direction of z.
2. (20 points.) Consider a radially polarized sphere of radius R described by

$$
\begin{equation*}
\mathbf{P}(\mathbf{r})=\alpha \mathbf{r} \theta(R-r) \tag{3}
\end{equation*}
$$

where α is constant.
(a) Calculate $-\boldsymbol{\nabla} \cdot \mathbf{P}$. Thus, find the effective charge density to be

$$
\begin{equation*}
\rho_{\mathrm{eff}}=-3 \alpha \theta(R-r)+\alpha r \delta(r-R) . \tag{4}
\end{equation*}
$$

(b) Using

$$
\begin{equation*}
\phi(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \int d^{3} r^{\prime} \frac{\rho_{\mathrm{eff}}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \tag{5}
\end{equation*}
$$

evaluate the electric potential to be

$$
\phi(\mathbf{r})= \begin{cases}-\frac{\alpha}{2 \varepsilon_{0}}\left(R^{2}-r^{2}\right), & r<R \tag{6}\\ 0, & R<r\end{cases}
$$

(Hint: Choose observation point \mathbf{r} along $\hat{\mathbf{z}}$.)
(c) Evaulate the electric field

$$
\mathbf{E}(\mathbf{r})=-\boldsymbol{\nabla} \phi(\mathbf{r})= \begin{cases}-\frac{\alpha}{\varepsilon_{0}} \mathbf{r}, & r<R \tag{7}\\ 0, & r>R\end{cases}
$$

(d) Find the enclosed charge inside a sphere of radius r using

$$
\begin{equation*}
Q_{\mathrm{en}}=\int d^{3} r^{\prime} \rho_{\mathrm{eff}}\left(\mathbf{r}^{\prime}\right) \tag{8}
\end{equation*}
$$

for $r<R$ and $r>R$.
(e) Use Gauss's law,

$$
\begin{equation*}
\oint d \mathbf{a} \cdot \mathbf{E}=\frac{1}{\varepsilon_{0}} Q_{\mathrm{en}}, \tag{9}
\end{equation*}
$$

to verify the expression for the electric field in Eq. (7).
(f) Interpret the electric field for $r>R$ as the electric field due to the total charge inside $r \leq R$.

