# Homework No. 02 (Fall 2020) <br> PHYS 520A: ELECTROMAGNETIC THEORY I <br> Department of Physics, Southern Illinois University-Carbondale <br> Due date: Friday, 2020 Sep 4, 11.00am 

1. (10 points.) Show that

$$
\begin{equation*}
\boldsymbol{\nabla}(\hat{\mathbf{r}} \cdot \mathbf{a})=-\frac{1}{r} \hat{\mathbf{r}} \times(\hat{\mathbf{r}} \times \mathbf{a}) \tag{1}
\end{equation*}
$$

for a uniform (homogeneous in space) vector a.
2. ( $\mathbf{1 0}$ points.) Evaluate the number evaluated by the expression

$$
\begin{equation*}
\frac{1}{2}\left[\hat{\boldsymbol{\rho}} \frac{\partial}{\partial \rho}+\hat{\boldsymbol{\phi}} \frac{1}{\rho} \frac{\partial}{\partial \phi}\right] \cdot(\rho \hat{\boldsymbol{\rho}}), \tag{2}
\end{equation*}
$$

where $\hat{\boldsymbol{\rho}}$ and $\hat{\boldsymbol{\phi}}$ are the unit vectors for cylindrical coordinates $(\rho, \phi)$ given by

$$
\begin{align*}
& \hat{\boldsymbol{\rho}}=\cos \phi \hat{\mathbf{i}}+\sin \phi \hat{\mathbf{j}}  \tag{3}\\
& \hat{\boldsymbol{\phi}}=-\sin \phi \hat{\mathbf{i}}+\cos \phi \hat{\mathbf{j}} . \tag{4}
\end{align*}
$$

3. (10 points.) Show that

$$
\int_{-\infty}^{\infty} d x f(x) \delta\left(x^{2}-a^{2}\right)= \begin{cases}\frac{f(a)}{|a|}, & \text { if } f(a) \text { is an even function }  \tag{5}\\ 0, & \text { if } f(a) \text { is an odd function }\end{cases}
$$

4. (10 points.) A uniformly charged infinitely thin disc of radius $R$ and total charge $Q$ is placed on the $x-y$ plane such that the normal vector is along the $z$ axis and the center of the disc at the origin. Write down the charge density of the disc in terms of $\delta$-function(s). Integrate over the charge density and verify that it returns the total charge on the disc.
