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1. (20 points.) Consider a uniformly polarized half-slab, that occupies half of space, and
has the direction of its polarization transverse to the direction ẑ normal to the surface of
slab, described by

P(r) = σ x̂ θ(−z), (1)

where σ is the polarization per unit volume of the slab. Determine the effective charge
density by evaluating

ρeff(r) = −∇ ·P. (2)

2. (20 points.) Consider a uniformly polarized disc of radius a that has electric polarization
in the radial direction, described by

P(r) = σρ θ(a− ρ)δ(z), (3)

where σ is a constant and has the dimensions of charge per unit area and ρ is the radial
unit vector in cylindrical polar coordinates.

(a) Determine the effective charge density by evaluating

ρeff(r) = −∇ ·P (4)

and show that
ρeff(r) = −2σθ(a− ρ)δ(z) + σaδ(ρ− a)δ(z). (5)

Interpret the effective charge density. Find the total charge on the disc using Qen =
∫

d3r ρeff(r).

(b) Rewrite the effective charge density in spherical polar coordinates,

ρeff(r) = −2σ
δ
(

θ − π
2

)

r
θ(a− ρ) + σa

δ
(

θ − π
2

)

a
δ(r − a). (6)

Again, find the total charge on the disc using Qen =
∫

d3r ρeff(r).

(c) Recall that the electric potential due to charged ring of radius a and total charge Q
of charge density

ρ(r′) =
Q

2πa

δ
(

θ′ − π
2

)

r′
δ(r′ − a) (7)
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is given by

φ(r, θ) =
1

4πε0

Q

r

∞
∑

n=0

(−1)n

22n
(2n)!

(n!)2

(a

r

)2n

P2n(cos θ), a < r. (8)

Similarly, the electric potential due to a charged disc of radius a and total charge Q
of charge density

ρ(r′) =
Q

πa2
δ
(

θ′ − π
2

)

r′
θ(a− r′). (9)

is given by

φ(r, θ) =
1

4πε0

Q

r

∞
∑

n=0

1

(n+ 1)

(−1)n

22n
(2n)!

(n!)2

(a

r

)2n

P2n(cos θ), a < r. (10)

Using these results, which need not be derived here, express the electric potential
due to the uniformly polarized disc in the form

φ(r, θ) =
(πa2)

4πε0

σ

r

∞
∑

n=0

αn

(−1)n

22n
(2n)!

(n!)2

(a

r

)2n

P2n(cos θ), a < r, (11)

and determine αn.

3. (20 points.) A simple model of a metal describes the electrons in it using Newton’s law,

m
d2x

dt2
+mγ

dx

dt
+mω2

0
x = eE. (12)

Here the first term involves the acceleration of electron, ω0-term binds the electron to the
atoms, while γ-term damps the motion.

Conductor: Conductivity in typical metals is dominated by the damping term, thus

mγv = eE. (13)

The current density j for (constant) density nf of conduction electrons is

j = nfev. (14)

Using Eqs. (13) and (14) in conjunction we have Ohm’s law

j =
nfe

2

mγ
E = σE, (15)

where σ is the static conductivity.

Superconductor: In 1935 Fritz London and Heinz London proposed that the current
density js in a superconductor is described by the acceleration term in Eq. (12). That is,

m
dv

dt
= eE, (16)
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which together with Eq. (14) leads to London “acceleration equation”

djs
dt

=
nfe

2

m
E. (17)

As a consequence steady currents are possible solutions when E = 0. The insight of the
London brothers led them to further propose, in addition, that the current density in a
superconductor satisfies

∇×

(

js +
nfe

2

m
A

)

= 0. (18)

Thus, up to a freedom in the choice of gauge χ, we have the London equation

µ0 js = −
1

λ2

L

(

A+∇χ
)

, (19)

where λL defined using
nfe

2

m
=

1

λ2

L

1

µ0

(20)

is the London penetration depth which is a measure of the distance magnetic field pen-
etrates into the surface of a superconductor. The London equation replaces Ohm’s law
for a superconductor. Note that the London equation is consistent with the “acceleration
equation” using the gauge freedom

A′ = A+∇χ, (21a)

φ′ = φ−
∂χ

∂t
. (21b)

(a) Using London’s equation show that a superconductor is characterized by the equa-
tions

µ0

∂js
∂t

=
1

λ2

L

E, (22)

µ0∇× js = −
1

λ2

L

B. (23)

(b) Show that the magnetic field satisfies the equation
(

∇
2
−

1

c2
∂2

∂t2

)

B =
1

λ2

L

B. (24)

For the static case, ∂B/∂t = 0, show that

∇
2B =

1

λ2

L

B, (25)

which implies the Meissner effect, that a uniform magnetic field cannot exist inside
a superconductor. In this static limit, and presuming planar geometry, it implies

B = B0 e
−

x

λL , (26)
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where the interpretation of λL as a penetration depth is apparent. Using Eq. (20)
calculate the penetration depth for nf ∼ 6 × 1028 /m3 (electron number density for
gold) and show that it is of the order of tens of nanometers.
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