Resource material on

δ-function

K. V. Shajesh

Department of Physics, Southern Illinois University-Carbondale, Carbondale, IL 62901, USA

1. ($\mathbf{1 0}$ points.) Consider the distribution

$$
\begin{equation*}
\delta(x)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\pi} \frac{\varepsilon}{x^{2}+\varepsilon^{2}} . \tag{1}
\end{equation*}
$$

Show that

$$
\delta(x)\left\{\begin{array}{lll}
\rightarrow \infty, & \text { if } & x=0 \tag{2}\\
\rightarrow 0, & \text { if } & x \neq 0
\end{array}\right.
$$

Further, show that

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x \delta(x)=1 \tag{3}
\end{equation*}
$$

Plot $\delta(x)$ before taking the limit $\varepsilon \rightarrow 0$ and identify ε in the plot.
2. ($\mathbf{1 0}$ points.) Consider the distribution

$$
\begin{equation*}
\delta(x)=\lim _{\epsilon \rightarrow 0} \frac{1}{2} \frac{\epsilon}{\left(x^{2}+\epsilon\right)^{\frac{3}{2}}} . \tag{4}
\end{equation*}
$$

Show that

$$
\delta(x)=\left\{\begin{array}{lll}
\rightarrow \frac{1}{\sqrt{\epsilon}} \rightarrow \infty, & \text { if } & x=0, \tag{5}\\
\rightarrow \frac{\epsilon}{x^{2}} \rightarrow 0, & \text { if } & x \neq 0 .
\end{array}\right.
$$

Further, show that

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x \delta(x)=1 \tag{6}
\end{equation*}
$$

Plot $\delta(x)$ before taking the limit $\varepsilon \rightarrow 0$ and identify ε in the plot.
3. ($\mathbf{1 0}$ points.) Consider the distribution

$$
\begin{equation*}
\delta(x)=\lim _{\sigma \rightarrow 0} \frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{x^{2}}{2 \sigma}} . \tag{7}
\end{equation*}
$$

Show that

$$
\delta(x)\left\{\begin{array}{lll}
\rightarrow \infty, & \text { if } & x=0 \tag{8}\\
\rightarrow 0, & \text { if } & x \neq 0
\end{array}\right.
$$

Further, show that

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x \delta(x)=1 \tag{9}
\end{equation*}
$$

Plot $\delta(x)$ before taking the limit $\varepsilon \rightarrow 0$ and identify ε in the plot.
4. (10 points.) An (idealized) infinitely long wire, (on the z-axis with infinitesimally small cross sectional area,) carrying a current I can be mathematically represented by the current density

$$
\begin{equation*}
\mathbf{J}(\mathbf{x})=\hat{\mathbf{z}} I \delta(x) \delta(y) \tag{10}
\end{equation*}
$$

A similar idealized wire forms a circular loop and is placed on the $x y$-plane with the center of the circular loop at the origin. Write down the current density of the circular loop carrying current I.
5. (10 points.) A uniformly charged spherical shell of radius a and total charge Q is described by charge density

$$
\begin{equation*}
\rho(\mathbf{x})=\frac{Q}{4 \pi a^{2}} \delta(r-a) . \tag{11}
\end{equation*}
$$

Verify that the volume integral of ρ equals Q.
6. ($\mathbf{1 0}$ points.) A uniformly charged infinitely thin disc of radius R and total charge Q is placed on the $x-y$ plane such that the normal vector is along the z axis and the center of the disc at the origin. Write down the charge density of the disc in terms of δ-function(s).
7. (10 points.) Write down the charge density for the following configurations: Point charge, line charge, surface charge, uniformly charged disc, uniformly charged ring, uniformly charged shell, uniformly charged spherical ball.

