Resource material on

Vector calculus in spherical polar coordinates

K. V. Shajesh
Department of Physics, Southern Illinois University-Carbondale, Carbondale, IL 62901, USA

1. ($\mathbf{1 0}$ points.) In spherical polar coordinates a point is coordinated by the intersection of family of spheres, cones, and half-planes, given by

$$
\begin{align*}
r & =\sqrt{x^{2}+y^{2}+z^{2}} \tag{1a}\\
\theta & =\tan ^{-1} \sqrt{\frac{x^{2}+y^{2}}{z^{2}}} \tag{1b}\\
\phi & =\tan ^{-1} \frac{y}{x} \tag{1c}
\end{align*}
$$

respectively. Show that the gradient of these surfaces are given by

$$
\begin{array}{ll}
\boldsymbol{\nabla} r=\hat{\mathbf{r}}, & \hat{\mathbf{r}}=\sin \theta \cos \phi \hat{\mathbf{i}}+\sin \theta \sin \phi \hat{\mathbf{j}}+\cos \theta \hat{\mathbf{k}}, \\
\boldsymbol{\nabla} \theta=\hat{\boldsymbol{\theta}} \frac{1}{r}, & \hat{\boldsymbol{\theta}}=\cos \theta \cos \phi \hat{\mathbf{i}}+\cos \theta \sin \phi \hat{\mathbf{j}}-\sin \theta \hat{\mathbf{k}}, \\
\boldsymbol{\nabla} \phi=\hat{\boldsymbol{\phi}} \frac{1}{r \sin \theta}, & \hat{\boldsymbol{\phi}}=-\sin \phi \hat{\mathbf{i}}+\cos \phi \hat{\mathbf{j}}, \tag{2c}
\end{array}
$$

which are normal to the respective surfaces. Sketch the surfaces and the corresponding normal vectors. This illustrates that $\boldsymbol{\nabla}$ (surface) is a vector (field) normal to the surface.
2. ($\mathbf{1 0}$ points.) Using the gradient operator in spherical polar coordinates,

$$
\begin{equation*}
\boldsymbol{\nabla}=\hat{\mathbf{r}} \frac{\partial}{\partial r}+\hat{\boldsymbol{\theta}} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{\boldsymbol{\phi}} \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}, \tag{3}
\end{equation*}
$$

evaluate the following

$$
\begin{array}{rlrl}
\frac{\partial}{\partial r} \hat{\mathbf{r}} & =0, & \frac{\partial}{\partial r} \hat{\boldsymbol{\theta}} & =0, \\
\frac{\partial}{\partial \theta} \hat{\mathbf{r}} & =\hat{\boldsymbol{\theta}}, & \frac{\partial}{\partial \theta} \hat{\boldsymbol{\theta}} & =-\hat{\mathbf{r}}, \\
\frac{\partial}{\partial \phi} \hat{\mathbf{r}} & =\sin \theta \hat{\boldsymbol{\phi}}, & \frac{\partial}{\partial \phi} \hat{\boldsymbol{\theta}} & =\cos \theta \hat{\boldsymbol{\phi}}, \tag{4c}\\
\frac{\partial}{\partial \theta} \hat{\boldsymbol{\phi}} & =0, \\
\frac{\partial}{\partial \phi} \hat{\boldsymbol{\phi}} & =-\hat{\boldsymbol{\rho}}=-(\sin \theta \hat{\mathbf{r}}+\cos \theta \hat{\boldsymbol{\theta}}) .
\end{array}
$$

Visualize the above variational statements graphically.
3. ($\mathbf{1 0}$ points.) Evaluate the following divergence of vector fields.

$$
\begin{array}{lll}
\boldsymbol{\nabla} \cdot \hat{\mathbf{r}}, & \boldsymbol{\nabla} \cdot \hat{\boldsymbol{\theta}}, & \boldsymbol{\nabla} \cdot \hat{\boldsymbol{\phi}}, \\
\boldsymbol{\nabla} \cdot\left(r^{2} \hat{\mathbf{r}}\right), & \boldsymbol{\nabla} \cdot\left(r^{2} \hat{\boldsymbol{\theta}}\right), & \boldsymbol{\nabla} \cdot\left(r^{2} \hat{\boldsymbol{\phi}}\right) \\
\boldsymbol{\nabla} \cdot\left(\frac{\hat{\mathbf{r}}}{r}\right), & \nabla \cdot\left(\frac{\hat{\boldsymbol{\theta}}}{r}\right), & \boldsymbol{\nabla} \cdot\left(\frac{\hat{\boldsymbol{\phi}}}{r}\right) . \tag{5c}
\end{array}
$$

Draw the vector fields. Visualize and interpret the action of the divergence operator. Which of the above are divergenceless.
4. (10 points.) Evaluate the following curl of vector fields.

$$
\begin{array}{ll}
\boldsymbol{\nabla} \times \hat{\mathbf{r}}, & \boldsymbol{\nabla} \times \hat{\boldsymbol{\theta}}, \quad \boldsymbol{\nabla} \times \hat{\boldsymbol{\phi}}, \\
\boldsymbol{\nabla} \times\left(r^{2} \hat{\mathbf{r}}\right), & \boldsymbol{\nabla} \times\left(r^{2} \hat{\boldsymbol{\theta}}\right), \quad \boldsymbol{\nabla} \times\left(r^{2} \hat{\boldsymbol{\phi}}\right) \\
\boldsymbol{\nabla} \times\left(\frac{\hat{\mathbf{r}}}{r}\right), \quad \boldsymbol{\nabla} \times\left(\frac{\hat{\boldsymbol{\theta}}}{r}\right), \quad \boldsymbol{\nabla} \times\left(\frac{\hat{\boldsymbol{\phi}}}{r}\right) \tag{6c}
\end{array}
$$

Draw the vector fields. Visualize and interpret the action of the curl operator. Which of the above are curl free.
5. ($\mathbf{3 0}$ points.) The scale factors for spherical polar coordinates are

$$
\begin{equation*}
h_{r}=1, \quad h_{\theta}=r, \quad h_{\phi}=r \sin \theta \tag{7}
\end{equation*}
$$

The differential statement in rectangular coordinates is

$$
\begin{equation*}
d \mathbf{r}=d x \hat{\mathbf{i}}+d y \hat{\mathbf{j}}+d z \hat{\mathbf{k}} \tag{8}
\end{equation*}
$$

and the corresponding differential statement in spherical polar coordinates is

$$
\begin{equation*}
d \mathbf{r}=h_{r} d r \hat{\mathbf{r}}+h_{\theta} d \theta \hat{\boldsymbol{\theta}}+h_{\phi} d \phi \hat{\boldsymbol{\phi}} \tag{9}
\end{equation*}
$$

The gradient operator in rectangular coordinates is

$$
\begin{equation*}
\boldsymbol{\nabla}=\hat{\mathbf{i}} \frac{\partial}{\partial x}+\hat{\mathbf{j}} \frac{\partial}{\partial y}+\hat{\mathbf{k}} \frac{\partial}{\partial z} \tag{10}
\end{equation*}
$$

and in spherical polar coordinates it is

$$
\begin{equation*}
\boldsymbol{\nabla}=\hat{\mathbf{r}} \frac{1}{h_{r}} \frac{\partial}{\partial r}+\hat{\boldsymbol{\theta}} \frac{1}{h_{\theta}} \frac{\partial}{\partial \theta}+\hat{\boldsymbol{\phi}} \frac{1}{h_{\phi}} \frac{\partial}{\partial \phi} \tag{11}
\end{equation*}
$$

Let a vector field in rectangular coordinates

$$
\begin{equation*}
\mathbf{E}=\hat{\mathbf{i}} E_{x}(x, y, z)+\hat{\mathbf{j}} E_{y}(x, y, z)+\hat{\mathbf{k}} E_{z}(x, y, z) \tag{12}
\end{equation*}
$$

be expressed in spherical polar coordinates as

$$
\begin{equation*}
\mathbf{E}=\hat{\mathbf{r}} E_{r}(r, \theta, \phi)+\hat{\boldsymbol{\theta}} E_{\theta}(r, \theta, \phi)+\hat{\boldsymbol{\phi}} E_{\phi}(r, \theta, \phi) \tag{13}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\nabla \cdot \mathbf{E}=\frac{1}{h_{r} h_{\theta} h_{\phi}}\left[\frac{\partial}{\partial r}\left(h_{\theta} h_{\phi} E_{r}\right)+\frac{\partial}{\partial \theta}\left(h_{\phi} h_{r} E_{\theta}\right)+\frac{\partial}{\partial \phi}\left(h_{r} h_{\theta} E_{\phi}\right)\right] . \tag{14}
\end{equation*}
$$

Show that

$$
\boldsymbol{\nabla} \times \mathbf{E}=\frac{1}{h_{r} h_{\theta} h_{\phi}}\left|\begin{array}{ccc}
h_{r} \hat{\mathbf{r}} & h_{\theta} \hat{\boldsymbol{\theta}} & h_{\phi} \hat{\boldsymbol{\phi}} \tag{15}\\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\
h_{r} E_{r} & h_{\theta} E_{\theta} & h_{\phi} E_{\phi}
\end{array}\right| .
$$

Show that

$$
\begin{equation*}
\nabla^{2}=\frac{1}{h_{r} h_{\theta} h_{\phi}}\left[\frac{\partial}{\partial r} \frac{h_{\theta} h_{\phi}}{h_{r}} \frac{\partial}{\partial r}+\frac{\partial}{\partial \theta} \frac{h_{\phi} h_{r}}{h_{\theta}} \frac{\partial}{\partial \theta}+\frac{\partial}{\partial \phi} \frac{h_{r} h_{\theta}}{h_{\phi}} \frac{\partial}{\partial \phi}\right] \tag{16}
\end{equation*}
$$

