Resource material on

# Vector calculus in cylindrical polar coordinates 

K. V. Shajesh<br>Department of Physics, Southern Illinois University-Carbondale, Carbondale, IL 62901, USA

1. ( $\mathbf{1 0}$ points.) In cylindrical polar coordinates a point in space is coordinatized by the intersection of family of right circular cylinders, half-planes, and planes, given by

$$
\begin{align*}
\rho & =\sqrt{x^{2}+y^{2}},  \tag{1a}\\
\phi & =\tan ^{-1} \frac{y}{x},  \tag{1b}\\
z & =z \tag{1c}
\end{align*}
$$

respectively. Show that the gradient of these surfaces are given by

$$
\begin{array}{ll}
\boldsymbol{\nabla} \rho=\hat{\boldsymbol{\rho}}, & \hat{\boldsymbol{\rho}}=\cos \phi \hat{\mathbf{i}}+\sin \phi \hat{\mathbf{j}}+0 \hat{\mathbf{k}}, \\
\boldsymbol{\nabla} \phi=\hat{\boldsymbol{\phi}}, & \hat{\boldsymbol{\phi}}=-\sin \phi \hat{\mathbf{i}}+\cos \phi \hat{\mathbf{j}}+0 \hat{\mathbf{k}}, \\
\nabla z=\hat{\mathbf{z}}, & \hat{\mathbf{z}}=0 \hat{\mathbf{i}}+0 \hat{\mathbf{j}}+\hat{\mathbf{k}},
\end{array}
$$

which are normal to the respective surfaces. Sketch the surfaces and the corresponding normal vectors. This illustrates that $\boldsymbol{\nabla}$ (surface) is a vector (field) normal to the surface.
2. (10 points.) The action of the gradient operator in cylindrical polar coordinates,

$$
\begin{equation*}
\boldsymbol{\nabla}=\hat{\boldsymbol{\rho}} \frac{\partial}{\partial \rho}+\hat{\boldsymbol{\phi}} \frac{1}{\rho} \frac{\partial}{\partial \phi}+\hat{\mathbf{z}} \frac{\partial}{\partial z} \tag{3}
\end{equation*}
$$

will involve the derivatives of the unit vectors in cylindrical polar coordinates. Evaluate the following

$$
\begin{array}{rlrl}
\frac{\partial}{\partial \rho} \hat{\boldsymbol{\rho}}=0, & \frac{\partial}{\partial \rho} \hat{\boldsymbol{\phi}} & =0, & \frac{\partial}{\partial \rho} \hat{\mathbf{z}}=0, \\
\frac{\partial}{\partial \phi} \hat{\boldsymbol{\rho}}=\hat{\boldsymbol{\phi}}, & \frac{\partial}{\partial \phi} \hat{\boldsymbol{\phi}}=-\hat{\boldsymbol{\rho}}, & \frac{\partial}{\partial \phi} \hat{\mathbf{z}}=0, \\
\frac{\partial}{\partial z} \hat{\boldsymbol{\rho}}=0, & \frac{\partial}{\partial z} \hat{\boldsymbol{\phi}}=0, & \frac{\partial}{\partial z} \hat{\mathbf{z}}=0 . \tag{4c}
\end{array}
$$

Visualize the above variational statements graphically.
3. ( $\mathbf{1 0}$ points.) Evaluate the following divergence of vector fields.

$$
\begin{array}{lll}
\boldsymbol{\nabla} \cdot \hat{\boldsymbol{\rho}}, & \boldsymbol{\nabla} \cdot \hat{\boldsymbol{\phi}}, & \boldsymbol{\nabla} \cdot \hat{\mathbf{z}}, \\
\boldsymbol{\nabla} \cdot\left(\rho^{2} \hat{\boldsymbol{\rho}}\right), & \boldsymbol{\nabla} \cdot\left(\rho^{2} \hat{\boldsymbol{\phi}}\right), & \boldsymbol{\nabla} \cdot\left(\rho^{2} \hat{\mathbf{z}}\right), \\
\boldsymbol{\nabla} \cdot\left(\frac{\hat{\boldsymbol{\rho}}}{\rho}\right), & \boldsymbol{\nabla} \cdot\left(\frac{\hat{\boldsymbol{\phi}}}{\rho}\right), & \boldsymbol{\nabla} \cdot\left(\frac{\hat{\mathbf{z}}}{\rho}\right) . \tag{5c}
\end{array}
$$

Draw the vector fields. Visualize and interpret the action of the divergence operator. Which of the above are divergenceless.
4. (10 points.) Evaluate the following curl of vector fields.

$$
\begin{array}{lll}
\boldsymbol{\nabla} \times \hat{\boldsymbol{\rho}}, & \boldsymbol{\nabla} \times \hat{\boldsymbol{\phi}}, \quad \boldsymbol{\nabla} \times \hat{\mathbf{z}}, \\
\boldsymbol{\nabla} \times\left(\rho^{2} \hat{\boldsymbol{\rho}}\right), & \boldsymbol{\nabla} \times\left(\rho^{2} \hat{\boldsymbol{\phi}}\right), & \boldsymbol{\nabla} \times\left(\rho^{2} \hat{\mathbf{z}}\right), \\
\boldsymbol{\nabla} \times\left(\frac{\hat{\boldsymbol{\rho}}}{\rho}\right), & \boldsymbol{\nabla} \times\left(\frac{\hat{\boldsymbol{\phi}}}{\rho}\right), & \boldsymbol{\nabla} \times\left(\frac{\hat{\mathbf{z}}}{\rho}\right) . \tag{6c}
\end{array}
$$

Draw the vector fields. Visualize and interpret the action of the curl operator. Which of the above are curl free.
5. (20 points.) For studying a phenomenon on a plane is it convenient to breakup

$$
\begin{align*}
\boldsymbol{\nabla} & =\boldsymbol{\nabla}_{\rho}+\hat{\mathbf{z}} \frac{\partial}{\partial z}  \tag{7}\\
\boldsymbol{\nabla}_{\rho} & =\hat{\boldsymbol{\rho}} \frac{\partial}{\partial \rho}+\hat{\phi} \frac{1}{\rho} \frac{\partial}{\partial \phi} . \tag{8}
\end{align*}
$$

Verify the following identities:

$$
\begin{array}{ll}
\nabla_{\rho} \cdot\left(\frac{\hat{\boldsymbol{\rho}}}{\rho}\right)=2 \pi \delta^{(2)}(\boldsymbol{\rho}), & \nabla_{\rho} \times\left(\frac{\hat{\boldsymbol{\rho}}}{\rho}\right)=0 \\
\nabla_{\rho} \cdot\left(\frac{\hat{\boldsymbol{\phi}}}{\rho}\right)=0, & \nabla_{\rho} \times\left(\frac{\hat{\boldsymbol{\phi}}}{\rho}\right)=\hat{\mathbf{z}} 2 \pi \delta^{(2)}(\boldsymbol{\rho}) \tag{9b}
\end{array}
$$

6. (30 points.) The scale factors for cylindrical polar coordinates are

$$
\begin{equation*}
h_{\rho}=1, \quad h_{\phi}=\rho, \quad h_{z}=1 \tag{10}
\end{equation*}
$$

The differential statement in rectangular coordinates is

$$
\begin{equation*}
d \mathbf{r}=d x \hat{\mathbf{i}}+d y \hat{\mathbf{j}}+d z \hat{\mathbf{k}} \tag{11}
\end{equation*}
$$

and the corresponding differential statement in cylindrical polar coordinates is

$$
\begin{equation*}
d \mathbf{r}=h_{\rho} d \rho \hat{\boldsymbol{\rho}}+h_{\phi} d \phi \hat{\boldsymbol{\phi}}+h_{z} d z \hat{\mathbf{z}} . \tag{12}
\end{equation*}
$$

The gradient operator in rectangular coordinates is

$$
\begin{equation*}
\boldsymbol{\nabla}=\hat{\mathbf{i}} \frac{\partial}{\partial x}+\hat{\mathbf{j}} \frac{\partial}{\partial y}+\hat{\mathbf{k}} \frac{\partial}{\partial z} \tag{13}
\end{equation*}
$$

and in cylindrical polar coordinates it is

$$
\begin{equation*}
\boldsymbol{\nabla}=\hat{\boldsymbol{\rho}} \frac{1}{h_{\rho}} \frac{\partial}{\partial \rho}+\hat{\boldsymbol{\phi}} \frac{1}{h_{\phi}} \frac{\partial}{\partial \phi}+\hat{\mathbf{z}} \frac{1}{h_{z}} \frac{\partial}{\partial z} . \tag{14}
\end{equation*}
$$

Let a vector field in rectangular coordinates

$$
\begin{equation*}
\mathbf{E}=\hat{\mathbf{i}} E_{x}(x, y, z)+\hat{\mathbf{j}} E_{y}(x, y, z)+\hat{\mathbf{k}} E_{z}(x, y, z) \tag{15}
\end{equation*}
$$

be expressed in cylindrical polar coordinates as

$$
\begin{equation*}
\mathbf{E}=\hat{\boldsymbol{\rho}} E_{\rho}(\rho, \phi, z)+\hat{\boldsymbol{\phi}} E_{\phi}(\rho, \phi, z)+\hat{\mathbf{z}} E_{z}(\rho, \phi, z) \tag{16}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \mathbf{E}=\frac{1}{h_{\rho} h_{\phi} h_{z}}\left[\frac{\partial}{\partial \rho}\left(h_{\phi} h_{z} E_{\rho}\right)+\frac{\partial}{\partial \phi}\left(h_{z} h_{\rho} E_{\phi}\right)+\frac{\partial}{\partial z}\left(h_{\rho} h_{\phi} E_{z}\right)\right] . \tag{17}
\end{equation*}
$$

Show that

$$
\boldsymbol{\nabla} \times \mathbf{E}=\frac{1}{h_{\rho} h_{\phi} h_{z}}\left|\begin{array}{ccc}
h_{\rho} \hat{\boldsymbol{\rho}} & h_{\phi} \hat{\boldsymbol{\phi}} & h_{z} \hat{\mathbf{z}}  \tag{18}\\
\frac{\partial}{\partial \rho} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\
h_{\rho} E_{\rho} & h_{\phi} E_{\phi} & h_{z} E_{z}
\end{array}\right| .
$$

Show that

$$
\begin{equation*}
\nabla^{2}=\frac{1}{h_{\rho} h_{\phi} h_{z}}\left[\frac{\partial}{\partial \rho} \frac{h_{\phi} h_{z}}{h_{\rho}} \frac{\partial}{\partial \rho}+\frac{\partial}{\partial \phi} \frac{h_{z} h_{\rho}}{h_{\phi}} \frac{\partial}{\partial \phi}+\frac{\partial}{\partial z} \frac{h_{\rho} h_{\phi}}{h_{z}} \frac{\partial}{\partial z}\right] . \tag{19}
\end{equation*}
$$

