Homework No. 10 (Fall 2020)
PHYS 500A: MATHEMATICAL METHODS
Department of Physics, Southern Illinois University-Carbondale Due date: Thursday, 2020 Dec 3, 9.30am

1. (20 points.) Generate 3D plots of surface spherical harmonics $Y_{l m}(\theta, \phi)$ as a function of θ and ϕ. In particular,
(a) Plot $\operatorname{Re}\left[Y_{73}(\theta, \phi)\right]$.
(b) Plot $\operatorname{Im}\left[Y_{73}(\theta, \phi)\right]$.
(c) Plot $\operatorname{Abs}\left[Y_{73}(\theta, \phi)\right]$.
(d) Plot your favourite spherical harmonic, that is, choose a l and m, and Re or Im or Abs.

Hint: In Mathematica these plots are generated using the following commands:
SphericalPlot3D[Re[SphericalHarmonicY[1,m, $\theta, \phi]],\{\theta, 0, \mathrm{Pi}\},\{\phi, 0,2 \mathrm{Pi}\}]$
SphericalPlot3D[Im[SphericalHarmonicY[l,m, $\theta, \phi]],\{\theta, 0, \mathrm{Pi}\},\{\phi, 0,2 \mathrm{Pi}\}]$
SphericalPlot3D[Abs [SphericalHarmonicY[l,m, $\theta, \phi]$], $\{\theta, 0, \mathrm{Pi}\},\{\phi, 0,2 \mathrm{Pi}\}]$
Refer to diagrams in Wikipedia article on 'spherical harmonics' to see some visual representations of these functions.
2. ($\mathbf{2 0}$ points.) The spherical harmonics are given by

$$
\begin{equation*}
Y_{l m}(\theta, \phi)=\sqrt{\frac{2 l+1}{4 \pi}} \sqrt{\frac{(l+m)!}{(l-m)!}}\left(\frac{e^{i \phi}}{\sin \theta}\right)^{m}\left(\frac{d}{d \cos \theta}\right)^{l-m} \frac{\left(\cos ^{2} \theta-1\right)^{l}}{2^{l} l!} \tag{1}
\end{equation*}
$$

Express $Y_{l l}(\theta, \phi)$ is terms of l, ϕ and $\sin \theta$.

