Homework No. 09 (Fall 2020)
PHYS 500A: MATHEMATICAL METHODS
Department of Physics, Southern Illinois University-Carbondale
Due date: Thursday, 2020 Nov 19, 9.30am

1. (20 points.) Use the integral representation of $J_{m}(t)$,

$$
\begin{equation*}
i^{m} J_{m}(t)=\int_{0}^{2 \pi} \frac{d \alpha}{2 \pi} e^{i t \cos \alpha-i m \alpha} \tag{1}
\end{equation*}
$$

to prove the recurrence relations

$$
\begin{align*}
2 \frac{d}{d t} J_{m}(t) & =J_{m-1}(t)-J_{m+1}(t) \tag{2a}\\
2 \frac{m}{t} J_{m}(t) & =J_{m-1}(t)+J_{m+1}(t) \tag{2b}
\end{align*}
$$

2. (20 points.) Using the recurrence relations of Eq. (2), show that

$$
\begin{equation*}
\left(-\frac{d}{d t}+\frac{m-1}{t}\right)\left(\frac{d}{d t}+\frac{m}{t}\right) J_{m}(t)=\left(\frac{d}{d t}+\frac{m+1}{t}\right)\left(-\frac{d}{d t}+\frac{m}{t}\right) J_{m}(t)=J_{m}(t) \tag{3}
\end{equation*}
$$

and from this derive the differential equation satisfied by $J_{m}(t)$.
3. (20 points.) Using the recurrence relations,

$$
\begin{align*}
2 \frac{d}{d t} J_{m}(t) & =J_{m-1}(t)-J_{m+1}(t) \tag{4a}\\
2 \frac{m}{t} J_{m}(t) & =J_{m-1}(t)+J_{m+1}(t) \tag{4b}
\end{align*}
$$

satisfied by the Bessel functions, derive the 'ladder' operations satisfied by the Bessel functions,

$$
\begin{align*}
\left(\frac{d}{d t}+\frac{m}{t}\right) J_{m}(t) & =J_{m-1}(t) \tag{5}\\
\left(-\frac{d}{d t}+\frac{m}{t}\right) J_{m}(t) & =J_{m+1}(t) \tag{6}
\end{align*}
$$

In quantum mechanics a ladder operator is a raising or lowering operator that transforms eigenfunctions by increasing or decreasing the eigenvalue.

