Homework No. 07 (Fall 2020)
PHYS 500A: MATHEMATICAL METHODS
Department of Physics, Southern Illinois University-Carbondale Due date: Tuesday, 2020 Oct 27, 9.30am

1. (20 points.) Show that

$$
\begin{align*}
& \oint_{c 1} d z \ln z=2 \pi i R \tag{1a}\\
& \oint_{c 2} d z \ln z=0 \tag{1b}
\end{align*}
$$

where the contours $c 1$ and $c 2$ are shown in Figure 1 , and R is the radius of the circle forming the contour. Is the function $\ln z$ analytic at $z=0$? Is the function $\ln z$ analytic at $z \neq 0$? Show that if the contour c winds around the origin more than once the integral evaluates to

$$
\begin{equation*}
\oint_{c} d z \ln z=2 \pi i R n \tag{2}
\end{equation*}
$$

where n is the number of times the contour winds around the origin.
Hint: Show that

$$
\begin{equation*}
\oint_{c 1} d z \ln z=-R \int_{0}^{2 \pi} \theta d \theta e^{i \theta} \tag{3}
\end{equation*}
$$

Figure 1: Contour c_{1} encircles the origin while contour c_{2} does not encircle the origin.
2. (20 points.) Evaluate the integral

$$
\begin{equation*}
I(\lambda)=\frac{1}{\pi} \int_{0}^{\infty} \frac{x^{\frac{1}{3}} d x}{1+2 x \cos \lambda+x^{2}} \tag{4}
\end{equation*}
$$

