Homework No. 05 (Fall 2020)
PHYS 500A: MATHEMATICAL METHODS
Department of Physics, Southern Illinois University-Carbondale
Due date: Thursday, 2020 Oct 1, 9.30am

1. (20 points.) Check if the function

$$
\begin{equation*}
f(z)=e^{z}+e^{i z} \tag{1}
\end{equation*}
$$

satisfies the Cauchy-Riemann conditions. If $f(z)$ is analytic for all z, then report the derivative as a function of z. Otherwise, determine the points, or regions, in the z plane where the function is not analytic.
2. (20 points.) Check if the function

$$
\begin{equation*}
f(z)=\frac{1}{z} \tag{2}
\end{equation*}
$$

satisfies the Cauchy-Riemann conditions.
(a) Verify that the Cauchy-Riemann conditions for this case are not well defined at $z=0$, but are fine for $z \neq 0$.
(b) Verify that

$$
\begin{equation*}
\frac{d f}{d z}=-\frac{1}{z^{2}}, \quad z \neq 0 \tag{3}
\end{equation*}
$$

(c) Determine the limiting value of the derivative as you approach $z=0$ along the positive real line, and, then, when you approach along the negative real line. Repeat the analysis along the imaginary line. Repeat the analysis along the line $x=y$. Are these limits identical?
(d) If these limits are not identical conclude that the derivative is not isotropic at $z=0$. Then, the function is not analytic at $z=0$.
3. (60 points.) Let

$$
\begin{equation*}
f(z)=z^{3}, \tag{4}
\end{equation*}
$$

so that

$$
\begin{equation*}
u(x, y)+i v(x, y)=r^{3}(\cos 3 \theta+\sin 3 \theta) \tag{5}
\end{equation*}
$$

(a) Verify that this function satisfies the Cauchy-Riemann conditions.
(b) Show that u and v are harmonic functions. That is, they satisfy the Laplacian. Further, show that

$$
\begin{equation*}
(\boldsymbol{\nabla} u) \cdot(\boldsymbol{\nabla} v)=0 \tag{6}
\end{equation*}
$$

Thus, the curves represented by u and v are orthogonal at every point.
(c) Since u is a harmonic function it represents equipotential curves. Plot the equipotentials

$$
\begin{equation*}
r=\left[\frac{u}{\cos 3 \theta}\right]^{\frac{1}{3}} \tag{7}
\end{equation*}
$$

for $u=-10,-1,-0.1,0,0.1,1,10$. In Mathematica this can be achieved using the command

$$
\text { PolarPlot }[\{r[-10], \ldots, r[10]\},\{\operatorname{th}, 0,2 \mathrm{Pi}\}],
$$

where $r[u]$ a function of u and th needs to be defined ahead.
(d) Determine the electric field associated to these equipotentials using

$$
\begin{equation*}
\mathbf{E}=-\boldsymbol{\nabla} u \tag{8}
\end{equation*}
$$

This is easily achieved using

$$
\begin{equation*}
\frac{\partial}{\partial x}=\frac{\partial r}{\partial x} \frac{\partial}{\partial r}+\frac{\partial \theta}{\partial x} \frac{\partial}{\partial \theta} \tag{9}
\end{equation*}
$$

and similarly for derivatives with respect to y. Recall

$$
\begin{equation*}
\frac{\partial r}{\partial x}=\frac{x}{r}, \quad \frac{\partial r}{\partial y}=\frac{y}{r}, \quad \frac{\partial \theta}{\partial x}=-\frac{\sin \theta}{r}, \quad \frac{\partial \theta}{\partial y}=\frac{\cos \theta}{r} . \tag{10}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\mathbf{E}=-\hat{\mathbf{i}} 3 r^{2} \cos 2 \theta+\hat{\mathbf{j}} 3 r^{2} \sin 2 \theta \tag{11}
\end{equation*}
$$

(e) The curves representing the field lines are obtained by requiring the tangent lines for these curves to have the same slope as the electric field,

$$
\begin{equation*}
\frac{d x}{E_{x}}=\frac{d y}{E_{y}} \tag{12}
\end{equation*}
$$

Rewrite this equation as

$$
\begin{equation*}
E_{y} d x-E_{x} d y=0 \tag{13}
\end{equation*}
$$

Comparing this equation with

$$
\begin{equation*}
\frac{\partial s}{\partial x} d x+\frac{\partial s}{\partial y} d y=0 \tag{14}
\end{equation*}
$$

identify the equations satisfied by the curves $s(x, y)$, representing the field lines associated to the equipotentials u, as

$$
\begin{equation*}
\frac{\partial s}{\partial x}=6 x y, \quad \frac{\partial s}{\partial y}=3\left(x^{2}-y^{2}\right) \tag{15}
\end{equation*}
$$

Solve these equations to determine the equations for the field lines to be

$$
\begin{equation*}
s(x, y)=3 x^{2} y-y^{3}=r^{3} \sin 3 \theta \tag{16}
\end{equation*}
$$

Figure 1: Equipotentials and field lines represented by the analytic function $f(z)=z^{3}$.
up to a constant. The field lines s are indeed v. Plot the field lines

$$
\begin{equation*}
r=\left[\frac{v}{\sin 3 \theta}\right]^{\frac{1}{3}} \tag{17}
\end{equation*}
$$

for $v=-10,-1,-0.1,0,0.1,1,10$.
(f) Plot the equipotentials in red and field lines in blue in the same plot. Here is a simple code for it in Mathematica

```
n = 3;
f[\mp@subsup{u}{-}{\prime}]=(u/\operatorname{Cos[n t]) ^(1/n);}
g[u_] = (u/Sin[n t])^(1/n);
PolarPlot[
    {f[-10], f[-1], f[-0.1], f[0], f[0.1], f[1], f[10],
    g[-10],g[-1],g[-0.1],g[0],g[0.1], g[1], g[10]},
    {t, -Pi, Pi},
    PlotStyle -> {Red, Red, Red, Red, Red, Red, Red,
        Blue, Blue, Blue, Blue, Blue, Blue, Blue},
    PlotRange -> {-4, 4}]
```

which generates the plots in Fig. 1.

