Homework No. 01 (Fall 2020)
PHYS 500A: MATHEMATICAL METHODS
Department of Physics, Southern Illinois University-Carbondale
Due date: Tuesday, 2020 Aug 25, 9.30am

1. (10 points.) In spherical polar coordinates a point is coordinated by the intersection of family of spheres, cones, and half-planes, given by

$$
\begin{align*}
r & =\sqrt{x^{2}+y^{2}+z^{2}} \tag{1a}\\
\theta & =\tan ^{-1} \sqrt{\frac{x^{2}+y^{2}}{z^{2}}} \tag{1b}\\
\phi & =\tan ^{-1} \frac{y}{x} \tag{1c}
\end{align*}
$$

respectively. Show that the gradient of these surfaces are given by

$$
\begin{array}{ll}
\boldsymbol{\nabla} r=\hat{\mathbf{r}}, & \hat{\mathbf{r}}=\sin \theta \cos \phi \hat{\mathbf{i}}+\sin \theta \sin \phi \hat{\mathbf{j}}+\cos \theta \hat{\mathbf{k}}, \\
\boldsymbol{\nabla} \theta=\hat{\boldsymbol{\theta}} \frac{1}{r}, & \hat{\boldsymbol{\theta}}=\cos \theta \cos \phi \hat{\mathbf{i}}+\cos \theta \sin \phi \hat{\mathbf{j}}-\sin \theta \hat{\mathbf{k}}, \\
\boldsymbol{\nabla} \phi=\hat{\boldsymbol{\phi}} \frac{1}{r \sin \theta}, & \hat{\boldsymbol{\phi}}=-\sin \phi \hat{\mathbf{i}}+\cos \phi \hat{\mathbf{j}} \tag{2c}
\end{array}
$$

which are normal to the respective surfaces. Sketch the surfaces and the corresponding normal vectors. This illustrates that $\boldsymbol{\nabla}$ (surface) is a vector (field) normal to the surface.

