Midterm Exam No. 02 (Fall 2020)
 PHYS 500A: MATHEMATICAL METHODS
 Department of Physics, Southern Illinois University-Carbondale
 Date: 2020 Oct 9

1. (20 points.) Locate $z=\pi^{i}$ on the complex plane.
2. ($\mathbf{2 0}$ points.) Find all the roots the equation

$$
\begin{equation*}
z^{3}=-1 \tag{1}
\end{equation*}
$$

Mark the points corresponding to the roots on the complex plane.
3. (20 points.) Check if the function

$$
\begin{equation*}
f(z)=\frac{1}{z} \tag{2}
\end{equation*}
$$

satisfies the Cauchy-Riemann conditions.
(a) Verify that the Cauchy-Riemann conditions for this case are not well defined at $z=0$, but are fine for $z \neq 0$.
(b) Verify that

$$
\begin{equation*}
\frac{d f}{d z}=-\frac{1}{z^{2}}, \quad z \neq 0 \tag{3}
\end{equation*}
$$

(c) Determine the limiting value of the derivative as you approach $z=0$ along the positive real line, and, then, when you approach along the negative real line. Repeat the analysis along the imaginary line. Repeat the analysis along the line $x=y$. Are these limits identical?
(d) If these limits are not identical conclude that the derivative is not isotropic at $z=0$. Then, the function is not analytic at $z=0$.
4. (20 points.) Evaluate $\boldsymbol{\nabla} \times \mathrm{A}$, given

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\hat{\phi} \frac{(1-\cos \theta)}{r \sin \theta} \tag{4}
\end{equation*}
$$

5. (20 points.) Show that the complex function

$$
\begin{equation*}
f=z z^{*} \tag{5}
\end{equation*}
$$

is not an analytic function. Express the function f in the form $f=u+i v$ and find that $u=\left(x^{2}+y^{2}\right)$ and $v=0$. Show that the Cauchy-Riemann conditions are not satisfied in this case. Could we modify the function v, keeping u the same, such that the new function f is analytic? That is, investigate if there exists a function v that satisfies the Cauchy-Riemann conditions with $u=\left(x^{2}+y^{2}\right)$? If yes, find a v, and interpret? If no, what is the interpretation?

