Final Exam (Fall 2020)

PHYS 500A: MATHEMATICAL METHODS
Department of Physics, Southern Illinois University-Carbondale
Due date: Tuesday, 2020 Dec 8, 10.00am

1. (20 points.) Starting from

$$
\begin{equation*}
\frac{\delta\left(\rho-\rho^{\prime}\right) \delta\left(\phi-\phi^{\prime}\right)}{\rho}=\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{i m\left(\phi-\phi^{\prime}\right)} \int_{0}^{\infty} k_{\perp} d k_{\perp} J_{m}\left(k_{\perp} \rho\right) J_{m}\left(k_{\perp} \rho^{\prime}\right) \tag{1}
\end{equation*}
$$

show that

$$
\begin{equation*}
\frac{\delta\left(\rho-\rho^{\prime}\right)}{\rho}=\int_{0}^{\infty} k_{\perp} d k_{\perp} J_{m}\left(k_{\perp} \rho\right) J_{m}\left(k_{\perp} \rho^{\prime}\right) . \tag{2}
\end{equation*}
$$

Hint: Multiply the first equation by $e^{-i m^{\prime}\left(\phi-\phi^{\prime}\right)}$ on both sides, and integrate with respect to ϕ. Use the property of δ-function on the left hand side, and

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} e^{i\left(m-m^{\prime}\right)\left(\phi-\phi^{\prime}\right)}=\delta_{m m^{\prime}} \tag{3}
\end{equation*}
$$

on the right hand side.
2. (20 points.) The generating function for the spherical harmonics, $Y_{l m}(\theta, \phi)$, is

$$
\begin{equation*}
\frac{1}{l!}\left(\mathbf{a} \cdot \frac{\mathbf{r}}{r}\right)^{l}=\sum_{m=-l}^{l} \sqrt{\frac{4 \pi}{2 l+1}} Y_{l m}(\theta, \phi) \psi_{l m} \tag{4}
\end{equation*}
$$

where the left hand side is expressed in terms of

$$
\begin{align*}
\mathbf{r} & =r(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \tag{5}\\
\mathbf{a} & =\frac{1}{2}\left(y_{-}^{2}-y_{+}^{2},-i y_{-}^{2}-i y_{+}^{2}, 2 y_{-} y_{+}\right) \tag{6}
\end{align*}
$$

and the right hand side consists of

$$
\begin{equation*}
\psi_{l m}=\frac{y_{+}^{l+m}}{\sqrt{(l+m)!}} \frac{y_{-}^{l-m}}{\sqrt{(l-m)!}} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
Y_{l m}(\theta, \phi)=e^{i m \phi} \sqrt{\frac{2 l+1}{4 \pi}} \sqrt{\frac{(l+m)!}{(l-m)!}} \frac{1}{(\sin \theta)^{m}}\left(\frac{d}{d \cos \theta}\right)^{l-m} \frac{\left(\cos ^{2} \theta-1\right)^{l}}{2^{l} l!} \tag{8}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\left(\mathbf{a} \cdot \frac{\mathbf{r}}{r}\right) \tag{9}
\end{equation*}
$$

is unchanged by the substitution: $y_{+} \leftrightarrow y_{-}, \theta \rightarrow-\theta, \phi \rightarrow-\phi$. Thus, show that

$$
\begin{equation*}
Y_{l m}(\theta, \phi)=Y_{l,-m}(-\theta,-\phi) \tag{10}
\end{equation*}
$$

3. (20 points.) Write down the explicit forms of the spherical harmonics $Y_{l m}(\theta, \phi)$ for $l=0,1,2$, by completing the $l-m$ differentiations in Eq. (8). Use the result in Eq. (10) to reduce the work by about half.
4. (20 points.) Legendre polynomials of order l is given by (for $|t|<1$)

$$
\begin{equation*}
P_{l}(t)=\left(\frac{d}{d t}\right)^{l} \frac{\left(t^{2}-1\right)^{l}}{2^{l} l!} \tag{11}
\end{equation*}
$$

(a) Write down the explicit forms of the Legendre polynomials $P_{l}(t)$ for $l=0,1,2,3$, by completing the l differentiations in Eq. (11).
(b) Show that the spherical harmonics for $m=0$ involves the Legendre polynomials,

$$
\begin{equation*}
Y_{l 0}(\theta, \phi)=\sqrt{\frac{2 l+1}{4 \pi}} P_{l}(\cos \theta) . \tag{12}
\end{equation*}
$$

(c) Using the orthonormality condition for the spherical harmonics

$$
\begin{equation*}
\int d \Omega Y_{l m}^{*}(\theta, \phi) Y_{l^{\prime} m^{\prime}}(\theta, \phi)=\delta_{l l^{\prime}} \delta_{m m^{\prime}} \tag{13}
\end{equation*}
$$

recognize the orthogonality statement for Legendre polynomials,

$$
\begin{equation*}
\frac{1}{2} \int_{-1}^{1} d t P_{l}(t) P_{l^{\prime}}(t)=\frac{\delta_{l l^{\prime}}}{2 l+1} . \tag{14}
\end{equation*}
$$

Use

$$
\begin{equation*}
P_{0}(t)=1, \quad P_{1}(t)=t, \quad P_{2}(t)=\frac{3}{2} t^{2}-\frac{1}{2} \tag{15}
\end{equation*}
$$

to check this explicitly for $l, l^{\prime}=0,1,2$.

End of Exam

