Final Exam (Fall 2020)

PHYS 500A: MATHEMATICAL METHODS

Department of Physics, Southern Illinois University—Carbondale
Due date: Tuesday, 2020 Dec 8, 10.00am

1. (20 points.) Starting from
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Hint: Multiply the first equation by e~ (@=¢) on both sides, and integrate with respect
to ¢. Use the property of -function on the left hand side, and
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on the right hand side.

2. (20 points.) The generating function for the spherical harmonics, Y;,,(0, ¢), is
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where the left hand side is expressed in terms of
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is unchanged by the substitution: y, <> y_, § — —60, ¢ — —¢. Thus, show that
Yim (0, ¢) = Yi—m (=0, —9). (10)



3. (20 points.) Write down the explicit forms of the spherical harmonics Y}, (6, ¢) for
[ =0,1,2, by completing the [ —m differentiations in Eq. (8). Use the result in Eq. (10)
to reduce the work by about half.

4. (20 points.) Legendre polynomials of order [ is given by (for |t| < 1)
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(a) Write down the explicit forms of the Legendre polynomials P;(t) for [ =0, 1,2, 3, by
completing the [ differentiations in Eq. (11).

(b) Show that the spherical harmonics for m = 0 involves the Legendre polynomials,

Yio(0,¢) = Fi(cos ). (12)

(¢) Using the orthonormality condition for the spherical harmonics
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recognize the orthogonality statement for Legendre polynomials,
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P(t) =1, Pi(t)=t Pyt) = gﬁ -3 (15)

to check this explicitly for [,I' = 0,1, 2.

End of Exam



