Homework No. 12 (2020 Fall) PHYS 320: ELECTRICITY AND MAGNETISM I

Due date: Friday, 2020 Dec 4, 2:00 PM, on D2L

1. (20 points.) A monochromatic plane electromagnetic wave is described by electric and magnetic fields of the form

$$\mathbf{E} = \mathbf{E}_0 e^{i\mathbf{k}\cdot\mathbf{r} - i\omega t},\tag{1a}$$

$$\mathbf{B} = \mathbf{B}_0 e^{i\mathbf{k}\cdot\mathbf{r} - i\omega t},\tag{1b}$$

where \mathbf{E}_0 and \mathbf{B}_0 are constants. Assume no charges or currents.

- (a) Using Maxwell's equations show that
 - $\mathbf{k} \cdot \mathbf{E} = \mathbf{0},\tag{2a}$

$$\mathbf{k} \cdot \mathbf{B} = 0, \tag{2b}$$

$$\mathbf{k} \times \mathbf{E} = \omega \mathbf{B},\tag{2c}$$

$$\mathbf{k} \times \mathbf{B} = -\frac{\omega}{c^2} \mathbf{E},\tag{2d}$$

where $\varepsilon_0 \mu_0 = 1/c^2$.

(b) For non-trivial cases ($\mathbf{E}_0 \neq 0$ and $\mathbf{B}_0 \neq 0$), using Eqs. (2), show that we have

$$ck = \omega. \tag{3}$$

Then, deduce the relations

$$\mathbf{E}^* \cdot \mathbf{B} = 0, \tag{4}$$

$$\mathbf{E}^* \times \mathbf{B} = \hat{\mathbf{k}} \frac{1}{c} |\mathbf{E}|^2 = \hat{\mathbf{k}} c |\mathbf{B}|^2.$$
(5)

Thus, we have

$$E = cB. (6)$$

(c) Evaluate the electromagnetic energy density

$$U = \frac{1}{2}\mathbf{D}^* \cdot \mathbf{E} + \frac{1}{2}\mathbf{B}^* \cdot \mathbf{H}$$
(7)

and the electromagnetic momentum density

$$\mathbf{G} = \mathbf{D}^* \times \mathbf{B}.\tag{8}$$

Then, determine the ratio U/G. What is the interpretation?