Homework No. 11 (2020 Fall)
 PHYS 320: ELECTRICITY AND MAGNETISM I

Due date: Tuesday, 2020 Nov 4, 2:00 PM, on D2L
0. Keywords: Green's function, method of images for planar geometry.

0 . Problems 1 and 2 are to be submitted for assessment. Rest are for practice.

1. (40 points.) The expression for the electric potential due to a point charge placed in front of a perfectly conducting semi-infinite slab described by

$$
\varepsilon(z)= \begin{cases}\infty, & z<0 \tag{1}\\ \varepsilon_{0}, & 0<z\end{cases}
$$

is given in terms of the reduced Green's function that satisfies the differential equation $\left(0<\left\{z, z^{\prime}\right\}\right)$

$$
\begin{equation*}
-\left[\frac{\partial^{2}}{\partial z^{2}}-k^{2}\right] \varepsilon_{0} g\left(z, z^{\prime}\right)=\delta\left(z-z^{\prime}\right) \tag{2}
\end{equation*}
$$

with boundary conditions requiring the reduced Green's function to vanish at $z=0$.
(a) Construct the reduced Green's function in the form

$$
g\left(z, z^{\prime}\right)= \begin{cases}A e^{k z}+B e^{-k z}, & 0<z<z^{\prime} \tag{3}\\ C e^{k z}+D e^{-k z}, & 0<z^{\prime}<z\end{cases}
$$

and solve for the four coefficients, A, B, C, D, using the conditions

$$
\begin{align*}
g\left(0, z^{\prime}\right) & =0, \tag{4a}\\
g\left(a, z^{\prime}\right) & =0, \tag{4b}\\
\left.g\left(z, z^{\prime}\right)\right|_{z=z^{\prime}-\delta} ^{z=z^{\prime}+\delta} & =0, \tag{4c}\\
\left.\varepsilon_{0} \partial_{z} g\left(z, z^{\prime}\right)\right|_{z=z^{\prime}-\delta} ^{z=z^{\prime}+\delta} & =-1 . \tag{4~d}
\end{align*}
$$

(b) Express the solution the form

$$
\begin{equation*}
g\left(z, z^{\prime}\right)=\frac{1}{\varepsilon_{0}} \frac{1}{2 k} e^{-k\left|z-z^{\prime}\right|}-\frac{1}{\varepsilon_{0}} \frac{1}{2 k} e^{-k|z|} e^{-k\left|z^{\prime}\right|} . \tag{5}
\end{equation*}
$$

(c) Deduce the method of images from the above solution.
2. (40 points.) The expression for the electric potential due to a point charge placed in between two perfectly conducting semi-infinite slabs described by

$$
\varepsilon(z)= \begin{cases}\infty, & z<0 \tag{6}\\ \varepsilon_{0}, & 0<z<a \\ \infty, & a<z\end{cases}
$$

is given in terms of the reduced Green's function that satisfies the differential equation $\left(0<\left\{z, z^{\prime}\right\}<a\right)$

$$
\begin{equation*}
\left[-\frac{\partial^{2}}{\partial z^{2}}+k^{2}\right] \varepsilon_{0} g\left(z, z^{\prime}\right)=\delta\left(z-z^{\prime}\right) \tag{7}
\end{equation*}
$$

with boundary conditions requiring the reduced Green's function to vanish at $z=0$ and $z=a$.
(a) Construct the reduced Green's function in the form

$$
g\left(z, z^{\prime}\right)= \begin{cases}A \sinh k z+B \cosh k z, & 0<z<z^{\prime}<a \tag{8}\\ C \sinh k z+D \cosh k z, & 0<z^{\prime}<z<a\end{cases}
$$

and solve for the four coefficients, A, B, C, D, using the conditions

$$
\begin{align*}
g\left(0, z^{\prime}\right) & =0, \tag{9a}\\
g\left(a, z^{\prime}\right) & =0, \tag{9b}\\
\left.g\left(z, z^{\prime}\right)\right|_{z=z^{\prime}-\delta} ^{z=z^{\prime}+\delta} & =0, \tag{9c}\\
\left.\varepsilon_{0} \partial_{z} g\left(z, z^{\prime}\right)\right|_{z=z^{\prime}-\delta} ^{z=z^{\prime} \delta \delta} & =-1 . \tag{9d}
\end{align*}
$$

Hint: The hyperbolic functions here are defined as

$$
\begin{equation*}
\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right) \quad \text { and } \quad \cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right) \tag{10}
\end{equation*}
$$

(b) Take the limit $k a \rightarrow \infty$ in your solution above, (which corresponds to moving the slab at $z=a$ to infinity,) to obtain the reduced Green's function for a single perfectly conducting slab,

$$
\begin{equation*}
\lim _{k a \rightarrow \infty} g\left(z, z^{\prime}\right)=\frac{1}{\varepsilon_{0}} \frac{1}{2 k} e^{-k\left|z-z^{\prime}\right|}-\frac{1}{\varepsilon_{0}} \frac{1}{2 k} e^{-k|z|} e^{-k\left|z^{\prime}\right|} . \tag{11}
\end{equation*}
$$

This should serve as a check for your solution to the reduced Green's function.
3. (40 points.) Consider the differential equation

$$
\begin{equation*}
\left[-\frac{\partial}{\partial z} \varepsilon(z) \frac{\partial}{\partial z}+\varepsilon(z) k_{\perp}^{2}\right] g_{\varepsilon}\left(z, z^{\prime}\right)=\delta\left(z-z^{\prime}\right) \tag{12}
\end{equation*}
$$

for the case

$$
\varepsilon(z)= \begin{cases}\varepsilon_{2}, & z<0 \tag{13}\\ \varepsilon_{1}, & 0<z\end{cases}
$$

satisfying the boundary conditions

$$
\begin{align*}
g_{\varepsilon}\left(-\infty, z^{\prime}\right) & =0, \tag{14a}\\
g_{\varepsilon}\left(+\infty, z^{\prime}\right) & =0 . \tag{14b}
\end{align*}
$$

(a) Verify, by integrating Eq. (12) around $z=z^{\prime}$, that the Green function satisfies the continuity conditions

$$
\begin{align*}
\left.g_{\varepsilon}\left(z, z^{\prime}\right)\right|_{z=z^{\prime}-\delta} ^{z=z^{\prime}+\delta} & =0, \tag{15a}\\
\left.\varepsilon(z) \frac{\partial}{\partial z} g_{\varepsilon}\left(z, z^{\prime}\right)\right|_{z=z^{\prime}-\delta} ^{z=z^{\prime}+\delta} & =-1 . \tag{15b}
\end{align*}
$$

(b) Verify, by integrating Eq. (12) around $z=0$, that the Green function satisfies the continuity conditions

$$
\begin{align*}
\left.g_{\varepsilon}\left(z, z^{\prime}\right)\right|_{z=0-\delta} ^{z=0+\delta} & =0, \tag{16a}\\
\left.\varepsilon(z) \frac{\partial}{\partial z} g_{\varepsilon}\left(z, z^{\prime}\right)\right|_{z=0-\delta} ^{z=0+\delta} & =0 . \tag{16b}
\end{align*}
$$

(c) For $z^{\prime}<0$, construct the solution in the form

$$
g_{\varepsilon}\left(z, z^{\prime}\right)= \begin{cases}A_{1} e^{k_{\perp} z}+B_{1} e^{-k_{\perp} z}, & z<z^{\prime}<0 \tag{17}\\ C_{1} e^{k_{\perp} z}+D_{1} e^{-k_{\perp} z}, & z^{\prime}<z<0 \\ E_{1} e^{k_{\perp} z}+F_{1} e^{-k_{\perp} z}, & z^{\prime}<0<z\end{cases}
$$

Determine the constants using the boundary conditions and continuity conditions.
(d) For $0<z^{\prime}$, construct the solution in the form

$$
g_{\varepsilon}\left(z, z^{\prime}\right)= \begin{cases}A_{2} e^{k_{\perp} z}+B_{2} e^{-k_{\perp} z}, & z<0<z^{\prime} \tag{18}\\ C_{2} e^{k_{\perp} z}+D_{2} e^{-k_{\perp} z}, & 0<z<z^{\prime} \\ E_{2} e^{k_{\perp} z}+F_{2} e^{-k_{\perp} z}, & 0<z^{\prime}<z\end{cases}
$$

Determine the constants using the boundary conditions and continuity conditions.
(e) Thus, find the solution

$$
g_{\varepsilon}\left(z, z^{\prime}\right)= \begin{cases}\frac{1}{\varepsilon_{2}} \frac{1}{2 k_{\perp}} e^{-k_{\perp}\left|z-z^{\prime}\right|}+\frac{1}{\varepsilon_{2}} \frac{1}{2 k_{\perp}}\left(\frac{\varepsilon_{2}-\varepsilon_{1}}{\varepsilon_{2}+\varepsilon_{1}}\right) e^{-k_{\perp}|z|} e^{-k_{\perp}\left|z^{\prime}\right|}, & z^{\prime}<0 \tag{19}\\ \frac{1}{\varepsilon_{1}} \frac{1}{2 k_{\perp}} e^{-k_{\perp}\left|z-z^{\prime}\right|}+\frac{1}{\varepsilon_{1}} \frac{1}{2 k_{\perp}}\left(\frac{\varepsilon_{1}-\varepsilon_{2}}{\varepsilon_{1}+\varepsilon_{2}}\right) e^{-k_{\perp}|z|} e^{-k_{\perp}\left|z^{\prime}\right|}, & 0<z^{\prime}\end{cases}
$$

