Homework No. 08 (2020 Fall)
 PHYS 320: ELECTRICITY AND MAGNETISM I

Due date: Wednesday, 2020 Oct 7, 2:00 PM, on D2L
0. Problems 1, 2, and 8 are to be submitted for assessment. Problem 10 is useful for conceptual understanding. Rest are for practice.

Keywords: Legendre polynomials, multipole expansion, electric potential due to multipoles.

1. (20 points.) Using Mathematica (or another graphing tool) plot the Legendre polynomials $P_{l}(x)$ for $l=0,1,2,3,4$ on the same plot. Note that $-1 \leq x \leq 1$. Based on the pattern you see what can you conclude about the number of roots for $P_{l}(x)$. In Mathematica these plots are generated using the following commands:
Plot $[\{\operatorname{LegendreP}[0, x]$, LegendreP $[1, x]$, LegendreP $[2, x]$, LegendreP [3, $x]$, LegendreP [4, x] \},\{x,-1, 1\}]
Compare your plots with those in Wikipedia article on 'Legendre Polynomials'. While there read the Wikipedia article on Adrien-Marie Legendre and the associated 'Portrait Debacle'.
2. (20 points.) Legendre polynomials are conveniently generated using the relation

$$
\begin{equation*}
P_{l}(x)=\left(\frac{d}{d x}\right)^{l} \frac{\left(x^{2}-1\right)^{l}}{2^{l} l!} \tag{1}
\end{equation*}
$$

where $-1 \leq x \leq 1$. Evaluate Legendre polynomials of degree $l=0,1,2,3,4$ in this manner.
3. (20 points.) Legendre polynomials $P_{l}(x)$ satisfy the relation

$$
\begin{equation*}
\int_{-1}^{1} d x P_{l}(x)=0 \quad \text { for } \quad l \geq 1 \tag{2}
\end{equation*}
$$

Verify this explicitly for $l=0,1,2,3,4$.
4. ($\mathbf{2 0}$ points.) Legendre polynomials satisfy the differential equation

$$
\begin{equation*}
\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+l(l+1)\right] P_{l}(\cos \theta)=0 . \tag{3}
\end{equation*}
$$

Verify this explicitly for $l=0,1,2,3,4$.
5. (20 points.) Legendre polynomials satisfy the orthogonality relation

$$
\begin{equation*}
\int_{-1}^{1} d x P_{l}(x) P_{l^{\prime}}(x)=\frac{2}{2 l+1} \delta_{l l^{\prime}} \tag{4}
\end{equation*}
$$

Verify this explicitly for $l=0,1,2$ and $l^{\prime}=0,1,2$.
6. (20 points.) Legendre polynomials satisfy the completeness relation

$$
\begin{equation*}
\sum_{l=0}^{\infty} \frac{2 l+1}{2} P_{l}(x) P_{l}\left(x^{\prime}\right)=\delta\left(x-x^{\prime}\right) \tag{5}
\end{equation*}
$$

This is for your information. No work needed.
7. (10 points.) The surface charge density on the surface of a charged sphere is given by

$$
\begin{equation*}
\sigma(\theta, \phi)=\frac{Q}{4 \pi a^{2}} \cos ^{2} \theta \tag{6}
\end{equation*}
$$

where θ is the polar angle in spherical coordinates. Express this charge distribution in terms of the Legendre polynomials. Recall,

$$
\begin{align*}
& P_{0}(\cos \theta)=1, \tag{7a}\\
& P_{1}(\cos \theta)=\cos \theta, \tag{7b}\\
& P_{2}(\cos \theta)=\frac{3}{2} \cos ^{2} \theta-\frac{1}{2} \tag{7c}
\end{align*}
$$

8. (20 points.) Consider the electric potential due to a solid sphere with uniform charge density Q. The angular integral in this evaluation involved the integral

$$
\begin{equation*}
\frac{1}{2} \int_{-1}^{1} d t \frac{1}{\sqrt{r^{2}+r^{\prime 2}-2 r r^{\prime} t}} \tag{8}
\end{equation*}
$$

Evaluate the integral for $r<r^{\prime}$ and $r^{\prime}<r$, where r and r^{\prime} are distances measured from the center of the sphere. (Hint: Substitute $r^{2}+r^{\prime 2}-2 r r^{\prime} t=y$.)
9. ($\mathbf{1 0}$ points.) The induced charge on the surface of a spherical conducting shell of radius a due to a point charge q placed a distance b away from the center is given by

$$
\begin{equation*}
\rho(\mathbf{r})=\sigma(\theta, \phi) \delta(r-a) \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma(\theta, \phi)=-\frac{q}{4 \pi a} \frac{\left(r_{>}^{2}-r_{<}^{2}\right)}{\left(a^{2}+b^{2}-2 a b \cos \theta\right)^{\frac{3}{2}}}, \tag{10}
\end{equation*}
$$

where $r_{<}=\operatorname{Min}(a, b)$ and $r_{>}=\operatorname{Max}(a, b)$. Calculate the dipole moment of this charge configuration (excluding the original charge q) using

$$
\begin{equation*}
\mathbf{d}=\int d^{3} r \mathbf{r} \rho(\mathbf{r}) \tag{11}
\end{equation*}
$$

for the two cases $a<b$ and $a>b$, representing the charge being inside or outside the sphere. (Hint: First complete the r integral and the ϕ integral. Then, for the θ integral substitute $a^{2}+b^{2}-2 a b \cos \theta=y$.)
10. (40 points.) Recollect Legendre polynomials

$$
\begin{equation*}
P_{l}(x)=\left(\frac{d}{d x}\right)^{l} \frac{\left(x^{2}-1\right)^{l}}{2^{l} l!} \tag{12}
\end{equation*}
$$

In particular

$$
\begin{align*}
& P_{0}(x)=1, \tag{13a}\\
& P_{1}(x)=x, \tag{13b}\\
& P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2} . \tag{13c}
\end{align*}
$$

Consider a charged spherical shell of radius a consisting of a charge distribution in the polar angle alone,

$$
\begin{equation*}
\rho\left(\mathbf{r}^{\prime}\right)=\sigma\left(\theta^{\prime}\right) \delta\left(r^{\prime}-a\right) \tag{14}
\end{equation*}
$$

The electric potential on the z-axis, $\theta=0$ and $\phi=0$, is then given by

$$
\begin{align*}
\phi(r, 0,0) & =\frac{1}{4 \pi \varepsilon_{0}} \int d^{3} r^{\prime} \frac{\rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \\
& =\frac{2 \pi a^{2}}{4 \pi \varepsilon_{0}} \int_{0}^{\pi} \sin \theta^{\prime} d \theta^{\prime} \frac{\sigma\left(\theta^{\prime}\right)}{\sqrt{r^{2}+a^{2}-2 a r \cos \theta^{\prime}}} \tag{15}
\end{align*}
$$

after evaluating the r^{\prime} and ϕ^{\prime} integral.
(a) Consider a uniform charge distribution on the shell,

$$
\begin{equation*}
\sigma(\theta)=\frac{Q}{4 \pi a^{2}} P_{0}(\cos \theta) \tag{16}
\end{equation*}
$$

Evaluate the integral in Eq. (15) to show that

$$
\begin{equation*}
\phi(r, 0,0)=\frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{r_{>}} \tag{17}
\end{equation*}
$$

where $r_{<}=\operatorname{Min}(a, r)$ and $r_{>}=\operatorname{Max}(a, r)$.
Note: This was done in class. Nevertheless, present the relevant steps.
(b) Next, consider a (pure dipole, 2×1-pole,) charge distribution of the form,

$$
\begin{equation*}
\sigma(\theta)=\frac{Q}{4 \pi a^{2}} P_{1}(\cos \theta) \tag{18}
\end{equation*}
$$

Evaluate the integral in Eq. (15) to show that

$$
\begin{equation*}
\phi(r, 0,0)=\frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{3} \frac{1}{r_{>}}\left(\frac{r_{<}}{r_{>}}\right) . \tag{19}
\end{equation*}
$$

Note: This was done in class. Nevertheless, present the relevant steps.
(c) Next, consider a (pure quadrapole, 2×2-pole,) charge distribution of the form,

$$
\begin{equation*}
\sigma(\theta)=\frac{Q}{4 \pi a^{2}} P_{2}(\cos \theta) \tag{20}
\end{equation*}
$$

Evaluate the integral in Eq. (15) to show that

$$
\begin{equation*}
\phi(r, 0,0)=\frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{5} \frac{1}{r_{>}}\left(\frac{r_{<}}{r_{>}}\right)^{2} . \tag{21}
\end{equation*}
$$

(d) For a (pure 2l-pole) charge distribution

$$
\begin{equation*}
\sigma(\theta)=\frac{Q}{4 \pi a^{2}} P_{l}(\cos \theta) \tag{22}
\end{equation*}
$$

the integral in Eq. (15) leads to

$$
\begin{equation*}
\phi(r, 0,0)=\frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{(2 l+1)} \frac{1}{r_{>}}\left(\frac{r_{<}}{r_{>}}\right)^{l} . \tag{23}
\end{equation*}
$$

