Homework No. 05 (2020 Fall) PHYS 320: Electricity and Magnetism I

Due date: Friday, 2020 Sep 11, 2:00 PM, on D2L

1. (20 points.) Using Gauss's law find the electric field inside and outside a solid sphere of radius R with total charge Q distributed inside the sphere with a charge density

$$
\begin{equation*}
\rho(\mathbf{r})=b r \theta(R-r) \tag{1}
\end{equation*}
$$

where r is the distance from the center of sphere. Here $\theta(x)=1$, if $x>0$, and 0 otherwise.
2. ($\mathbf{2 0}$ points.) Using Gauss's law find the electric field in a region, a distance R away from the origin, if the charge density in space is given

$$
\begin{equation*}
\rho(\mathbf{r})=\frac{\sigma}{r} \tag{2}
\end{equation*}
$$

where r is the radial distance from origin and σ is a parameter with units of charge per unit area.
3. ($\mathbf{2 0}$ points.) (Problem 2.15 Griffiths 4 th/3rd edition.)

A thick spherical shell carries charge density

$$
\begin{equation*}
\rho(\mathbf{r})=\frac{k}{r^{2}}, \quad a \leq r \leq b \tag{3}
\end{equation*}
$$

Find the electric field in the three regions: (i) $r<a$, (ii) $a<r<b$, (iii) $b<r$. Plot $|\mathbf{E}|$ as a function of r, for the case $b=2 a$.
4. (40 points.) Consider a uniformly charged solid sphere of radius R with total charge Q.
(a) Using Gauss's law show that the electric field inside and outside the sphere is given by

$$
\mathbf{E}(\mathbf{r})= \begin{cases}\frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{R^{2}} \frac{r}{R} \hat{\mathbf{r}}, & r<R \tag{4}\\ \frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{r^{2}} \hat{\mathbf{r}}, & r>R\end{cases}
$$

where \mathbf{r} is the radial vector with respect to the center of sphere.
(b) Plot the magnitude of the electric field as a function of r.
(c) Rewrite your results for the case when the solid sphere is a perfect conductor?
(d) Rewrite your results for the case of a uniformly charged hollow sphere of radius R with total charge Q.

