Homework No. 03 (2020 Fall) PHYS 320: Electricity and Magnetism I

Due date: None

1. (10 points.) (Based on problem 1.26 Griffiths 4th edition.) Calculate the Laplacian of the function

$$
\begin{equation*}
T_{a}=x^{2}+2 x y+3 z+4 \tag{1}
\end{equation*}
$$

2. (10 points.) (Based on problem 1.32/1.31 Griffiths 4th/3rd edition.)

Check the fundamental theorem for gradients,

$$
\begin{equation*}
\int_{\mathbf{a}}^{\mathbf{b}} d \mathbf{l} \cdot \boldsymbol{\nabla} T=T(\mathbf{b})-T(\mathbf{a}), \tag{2}
\end{equation*}
$$

using $T=x^{2}+4 x y+2 y z^{3}$, the points $\mathbf{a}=(0,0,0), \mathbf{b}=(1,1,1)$, integrated along the path in Fig. 1.28 (a) in Griffiths, obtained by connecting the points

$$
\begin{equation*}
(0,0,0) \rightarrow(1,0,0) \rightarrow(1,1,0) \rightarrow(1,1,1) \tag{3}
\end{equation*}
$$

3. ($\mathbf{1 0}$ points.) (Based on problem 1.33/1.32 Griffiths 4th/3rd edition.)

Check the fundamental theorem of divergence,

$$
\begin{equation*}
\int_{V} d^{3} x \boldsymbol{\nabla} \cdot \mathbf{E}=\oint_{S} d \mathbf{a} \cdot \mathbf{E}, \tag{4}
\end{equation*}
$$

for the vector field $\mathbf{E}=x \hat{\mathbf{x}}$. Take a cube of length L as your volume, which is placed with one edge parallel to the x-axis. Using the fact that the divergence of a vector field at a point tells us whether a point is a source or sink of the field, estimate the distribution of the source and sink for the field \mathbf{E} ?
4. (10 points.) (Based on problem 1.34/1.33 Griffiths 4th/3rd edition.)

Check the fundamental theorem of curl,

$$
\begin{equation*}
\int_{S} d \mathbf{a} \cdot \boldsymbol{\nabla} \times \mathbf{E}=\oint_{C} d \mathbf{l} \cdot \mathbf{E}, \tag{5}
\end{equation*}
$$

(where the sense of the line integration is given by the right hand rule: the contour C is traversed in the sense of the fingers of the right hand and the thumb points in the sense of the orientation of the surface,) for the vector field $\mathbf{E}=y \hat{\mathbf{x}}+z \hat{\mathbf{y}}+x \hat{\mathbf{z}}$. Take a square of length L on the $z=0$ plane as your surface, which is placed with one side parallel to the x-axis. Using the fact that the curl of a vector field at a point is a measure of the torque experienced by a (point) dipole at the point, estimate the torque field.

