Homework No. 02 (2020 Fall)
 PHYS 320: Electricity and Magnetism I

Due date: Monday, 2020 Aug 31, 2:00 PM, in class or on D2L

1. ($\mathbf{2 0}$ points.) Verify the following identities:

$$
\begin{align*}
\nabla r & =\frac{\mathbf{r}}{r}=\hat{\mathbf{r}}, \tag{1a}\\
\boldsymbol{\nabla} \mathbf{r} & =\mathbf{1} . \tag{1b}
\end{align*}
$$

Further, show that

$$
\begin{array}{r}
\boldsymbol{\nabla} \cdot \mathbf{r}=3 \\
\boldsymbol{\nabla} \times \mathbf{r}=0 \tag{2b}
\end{array}
$$

Here r is the magnitude of the position vector \mathbf{r}, and $\hat{\mathbf{r}}$ is the unit vector pointing in the direction of \mathbf{r}.
2. (20 points.) (Based on Problem 1.13, Griffiths 4th edition.)

Show that

$$
\begin{equation*}
\boldsymbol{\nabla} r^{2}=2 \mathbf{r} \tag{3}
\end{equation*}
$$

Then evaluate $\boldsymbol{\nabla} r^{3}$. Show that

$$
\begin{equation*}
\nabla \frac{1}{r}=-\frac{\hat{\mathbf{r}}}{r^{2}} \tag{4}
\end{equation*}
$$

Then evaluate

$$
\begin{equation*}
\nabla\left(\frac{1}{r^{2}}\right) \tag{5}
\end{equation*}
$$

3. (20 points.) Use index notation or dyadic notation to show that

$$
\begin{align*}
\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \mathbf{A}) & =\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{A})-\nabla^{2} \mathbf{A} \tag{6a}\\
\boldsymbol{\nabla} \cdot(\mathbf{A} \times \mathbf{B}) & =(\boldsymbol{\nabla} \times \mathbf{A}) \cdot \mathbf{B}-\mathbf{A} \cdot(\boldsymbol{\nabla} \times \mathbf{B}) \tag{6b}
\end{align*}
$$

